Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемВиктория Яхъева
2 Трёхгранные и многогранные углы: Трёхгранным углом называется фигура образованная тремя плоскостями, ограни- ченными тремя лучами, исходящими из одной точки и не лежащей в одной плоскости. Рассмотрим какой-нибудь плоский многоугольник и точку лежащую вне плоскости этого многоугольника. Проведём из этой точки лучи, проходящие через вершины многоугольника. Мы получим фигуру, которая называется многогранным углом.
3 Трёхгранный угол это часть пространства, ограниченная тремя плоскими углами с общей вершиной и попарно общими сторонами, не лежащими в одной плоскости. Общая вершина О этих углов называется вершиной трёхгранного угла. Стороны углов называются рёбрами, плоские углы при вершине трёхгранного угла называются его гранями. Каждая из трёх пар граней трёхгранного угла образует двугранный угол плоскими угламидвугранный угол
4 Основные свойства трехгранного угла 1. Каждый плоский угол трёхгранного угла меньше суммы двух других его плоских углов. + > ; + > ; + > 2. Сумма плоских углов трёхгранного угла меньше 360 градусов α, β, γ плоские углы, A, B, C двугранные углы, составленные плоскостями углов β и γ, α и γ, α и β. 3. Первая теорема косинусов для трёхгранного угла 4. Вторая теорема косинусов для трёхгранного угла
5 , 5. Теорема синусов Многогранный угол, внутренняя область которого расположена по одну сторону от плоскости каждой из его граней, называется выпуклым многогранным углом. В противном случае многогранный угол называется невыпуклым.
7 Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников.
8 Грани многогранника - это многоугольники, которые его образуют. Ребра многогранника - это стороны многоугольников. Вершины многогранника - это вершины многоугольника. Диагональ многогранника - это отрезок, соединяющий 2 вершины, не принадлежащие одной грани.
9 выпуклый невыпуклый
10 Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности.
11 Правильные многогранники Если грани многогранника являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер, то выпуклый многогранник называется правильным.
12 пришли из Древней Греции, в них указывается число граней: «эдра» грань; «тетра» 4; «гекса» 6; «окта» 8; «икоса» 20; «додека» 12. Названия многогранников
13 Правильный тетраэдр Составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180º. Рис. 1
14 Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240º. Правильный октаэдр Рис. 2
15 Правильный икосаэдр Составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300º. Рис. 3
16 Составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270º. Куб (гексаэдр) Рис. 4
17 Правильный додекаэдр Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324º. Рис. 5
18 Правильный многогранник Число гранейвершинрёбер Тетраэдр446 Куб6812 Октаэдр8612 Додекаэдр Икосаэдр Таблица 1
19 Сумма числа граней и вершин любого многогранника равна числу рёбер, увеличенному на 2. Г + В = Р + 2 Формула Эйлера Число граней плюс число вершин минус число рёбер в любом многограннике равно 2. Г + В Р = 2
20 Правильный многогранник Число граней и вершин (Г + В) рёбер (Р) Тетраэдр4 + 4 = 86 «тетра» 4; Куб6 + 8 = 1412 «гекса» 6; Октаэдр8 + 6 = 1412 «окта» 8 Додекаэдр = додека» 12. Икосаэдр = «икоса» 20 Таблица 2
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.