Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемМаргарита Мещерякова
2 Теорема косинусовТеорема синусов Соотношения между сторонами и углами треугольника Решения треугольников Нажатием мышки выберите нужную тему. Тест РЕШЕНИЕ ТРЕУГОЛЬНИКОВ
3 Теорема 1. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. A B C BC ² = AB ² + AC ² - 2AB AC cos α ! ! Далее
4 Дано: Найти: Решение: AC = 5 м BC - ? AB C BC ² = AB ² + AC ² - 2AB AC cos BC ² = 6 ² + 5 ² ,6 BC ² = BC ² = 25 BC = 5 Ответ: 5 м. BC = ? AB = 6 м cos = 0,6
5 BC ² = AB ² + AC ² - 2AB AC cos Далее Дано: Найти: Решение: AC = 5 м cos - ? A B C Ответ: 0,2. cos = (AB ² + AC ² - BC ²) / 2AB AC cos = (6 ² + 5 ² - 7 ²) / cos = ( ) / 60 cos = 0, AB = 6 м BC = 7 м
6 Дано: Найти: Решение: BC = 4 м AD - ? BD - ? AB C BC ² = AB ² + AC ² - 2AB AC cos BC ² = AB ² + AC ² – 2AB AD Ответ: AD = 3,75 м; BD = 2,25 м. D AD = (AB ² + AC ² – BC ² ) / 2AB AD = (6 ² + 5 ² – 4 ² ) / 2 6 AD = ( – 16 ) / 12 AD = 3,75 BD = AB - AD BD = 6 – 3,75 = 2,25 Возврат в меню AC = 5 м AB = 6 м
7 Далее Теорема 2. Стороны треугольника пропорциональны синусам противолежащих углов. AB C ! ! AB C a/sin = b/sin β = c/sin γ a b c a b c β β γ γ
8 Дано: Найти: Решение: ABC AB - ? Ответ: b sin γ / sin ( + γ) Далее A B C b γ b / sin β = AB / sin γ AB = b sin γ / sin β AB = b sin γ / sin (180 – ( + γ)) AB = b sin γ / sin ( + γ) AC = b, γ точка B недоступна
9 Возврат в меню Дано: Найти: Решение: = 45° b - ? A B C a b c Ответ: 3 6 / 2 a/sin =b/sin β b= a sin β/ sin b = 3 sin 60 ° / sin 45 ° β b = 3 ( 3 / 2) / (1 / 2 ) b = 3 6 / 2 β = 60° a = 3 м
10 b ! Далее Теорема 3. В треугольнике против большего угла лежит большая сторона, а против большей стороны лежит больший угол. AB C AB C a a b β β Если > β, то a > b ! Соотношения между сторонами и углами треугольника
11 C Далее Дано:Решение: ABC - равнобедренный A = C > 60° A B Значит, A + C > 120° B = 180° - ( A + C)
12 Возврат в меню Дано: Найти: Решение: AC = 18 см Ответ: A - острый. Каким является А – острым, прямым или тупым? A B C Так как AB > AC, то C > B То есть С > 50° Тогда B + C > 100° A = 180° - ( B + C) > 80° A - острый 50° AB = 20 см B = 50° ? Соотношения между сторонами и углами треугольника
13 c = 20 (sin 45° / sin 75°) 20 (0,7 / 0,966) 14,6 Далее Дано: Найти: Решение: a = 20 см Ответ: 45°; 17,9 см; 14,6 см. γ - ? b - ? c - ? γ = 180° - (β + ) γ = 180° - (75° + 60°) = 45° b = a (sin β / sin γ) с a b β γ b = 20 (sin 60° / sin 75°) 20 (0,866 / 0,966) 17,9 c = a (sin γ / sin ) a / sin = b / sin β = c / sin γ = 75 ° β = 60°
14 γ Далее Дано: Найти: Решение: Ответ: 28 см; 39°; 11°. cos = (b ² + c ² - a ²) / 2 b c cos = ( – 49) / ,981 11° a = 7 м a b β c - ? β - ? c - ? β =180° - ( + γ) = 180° - (11° + 130°) 39° c = a ² + b ² - 2 a b cos γ c = – (- 0,643) 28 b = 23 м γ = 130°
15 Далее Дано: Найти: Решение: a = 7 см Ответ: 54°; 13°; 113°. - ? β - ? γ - ? cos = (b ² + c ² - a ²) / 2 b c cos = ( – 49) / ,981 54° γ 180° - ( + β) = 180° - (54° + 13°) = 113° cos β = (a ² + c ² - b ²) / 2 a c cos β = ( – 4) / ,973 β 13° γ a b β c b = 2 см c = 8 см
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.