Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемschool-gimnazia.ucoz.org
1 Вписанные и описанные тела
2 Цилиндр, описанный около призмы Цилиндр можно описать около прямой призмы если ее основание – многоугольник, вписанный в окружность. Радиус цилиндра R равен радиусу этой окружности Ось цилиндра лежит на одной прямой с высотой Н призмы, соединяющей центры окружностей, описанных около оснований призмы
3 Цилиндр, вписанный в призму Цилиндр можно вписать в прямую призму, если ее основание – многоугольник, описанный около окружности Радиус цилиндра r равен радиусу этой окружности. Ось цилиндра лежит на одной прямой с высотой Н призмы, соединяющей центры окружностей, вписанных в основания призмы
4 Конус, описанный около пирамиды Конус можно описать около пирамиды, если ее основание – многоугольник, вписанный в окружность, а вершина пирамиды проецируется в центр этой окружности Радиус конусу R равен радиусу этой окружности, а высоты Н конуса и пирамиды совпадают
5 Конус, вписанный в пирамиду вписанный в пирамиду Конус можно описать около пирамиды, если ее основание – многоугольник, описанный около окружности, а вершина пирамиды проецируется в центр этой окружности Радиус конусу r равен радиусу этой окружности, а высоты Н конуса и пирамиды совпадают
6 Шар, писанный около цилиндра Шар можно описать около любого (прямого кругового) цилиндра. Окружность оснований лежит на поверхности шара Центр шара лежит на середине высоты, проходящей через ось цилиндра
7 Радиус шара R, радиус цилиндра r и высота цилиндра Н связаны соотношением: Сечение плоскостью, проходящей через ось цилиндра (осевое сечение)
8 Шар, вписанный в цилиндр Шар можно вписать только в такой цилиндр, высота которого равна диаметру основания (такой цилиндр называется равносторонним) Шар касается оснований цилиндра в их центрах и боковой поверхности цилиндра по окружности большого круга шара параллельной основаниям цилиндра
9 Радиус шара R равен радиусу цилиндра r, а диаметр шара равен высоте цилиндра: R=r 2R=H Сечение плоскостью, проходящей через ось цилиндра (осевое сечение)
10 Шар, описанный около конуса Шар можно описать около любого конуса. Окружность основания конуса и вершина конуса лежат на поверхности шара. Центр шара лежит на оси конуса и совпадает с центром окружности, описанной около треугольника, являющегося осевым сечением конуса
11 Радиус шара R, радиус конуса r и высота конуса Н связаны соотношением: R 2 = (H-R) 2 + r 2 Это соотношение справедливо и в том случае когда HR Сечение плоскостью, проходящей через ось конуса (осевое сечение)
12 Шар, вписанный в конус Шар можно вписать в любой конус. Шар касается основания конуса в его центе и боковой поверхности конуса по окружности, лежащей в плоскости, параллельной основанию конуса. Центр шара лежит на оси конуса и совпадает с центром окружности, вписанной в треугольник, являющийся осевым сечением конуса
13 Радиус шара R, радиус конуса r и высота конуса Н связаны соотношением: Сечение плоскостью, проходящей через ось конуса (осевое сечение)
14 Шар, описанный около призмы Шар можно описать около призмы, если она прямая и ее основания являются многоугольниками, вписанными в окружность. Центр шара лежит на середине высоты призмы, соединяющей центры окружностей, описанных около оснований призмы
15 Сечение полуплоскостью, проходящей через центр шара и боковое ребро призмы. (Полуплоскость ограничена прямой, параллельной боковому ребру призмы и проходящей через центр шара) Радиус шара R, высота призмы H и радиус окружности r, описанной около основания призмы, связаны соотношением:
16 Шар, вписанный в прямую призму Шар можно вписать в прямую призму, если ее основания являются многоугольниками, описанными около окружности, а высота призмы равна диаметру этой окружности. Радиус вписанного шара равен радиусу этой окружности. Центр шара лежит на середине высоты призмы, соединяющей центры окружностей, вписанных в основания призмы
17 Сечение полуплоскостью, перпендикулярной боковой грани призмы и проходящей через высоту призмы, соединяющую центры окружностей, вписанных в основания Радиус шара R, высота призмы H и радиус окружности r, вписанной в основание призмы, связаны соотношениями :
18 Шар, описанный около правильной пирамиды Шар можно описать около любой правильной пирамиды. Центр шара лежит на прямой, содержащей высоту пирамиды и совпадает с центром окружности, описанной около равнобедренного треугольника, боковой стороной которого является боковое ребро пирамиды, а высотой – высота пирамиды. Радиус шара равен радиусу этой окружности
19 Сечение полуплоскостью, проходящей через центр шара и боковое ребро пирамиды. (Полуплоскость ограничена прямой, проходящей через высоту пирамиды) Радиус шара R, и высота пирамиды H и радиус окружности r, описанной около основания пирамиды, связаны соотношением: R 2 = (H-R) 2 + r 2 Это соотношение справедливо и в том случае когда HR В - Боковое ребро пирамиды Н – Высота пирамиды
20 Шар, вписанный в правильную пирамиду Шар можно описать около любой правильной пирамиды. Центр шара лежит на высоте пирамиды и совпадает с центром окружности, вписанной в равнобедренный треугольник, боковой стороной которого является апофема (высота боковой грани) пирамиды, а высотой – высота пирамиды. Радиус шара равен радиусу этой окружности
21 Сечение полуплоскостью, проходящей через центр шара и апофему пирамиды. (Полуплоскость ограничена прямой, проходящей через высоту пирамиды) Радиус шара R высота пирамиды H и радиус окружности r, вписанной в основание пирамиды, связаны соотношением:
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.