Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемdist-tutor.info
2 Символ константы Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году. Это обозначение происходит от начальной буквы греческих слов περιφέρεια окружность, периферия и περίμετρος периметр. История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.
3 - иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа была впервые доказана Иоганном Ламбертом в 1761 году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел и. трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами.
4 Транcцендентность числа была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году. Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа, то доказательство трансцендентности положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.
5 В 1934 году Гельфонд доказал трансцендентность числа. В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа и алгебраически независимы, откуда, в частности, следует трансцендентность чисел и является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли к кольцу периодов
6 Архимед, возможно, первым предложил математический способ вычисления. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96- угольник, Архимед предположил, что примерно равняется 22/
8 Знаменательно, что праздник числа Пи совпадает с днем рождения одного из наиболее выдающихся физиков современности - Альберта Эйнштейна. АЛЬБЕРТ ЭЙНШТЕЙН ( )
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.