Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемЕлена Балашова
1 Эшер, Макуриц Корнелис Ма́куриц Корне́лис Э́шер (нидерл. Maurits Cornelis Escher; нидерл. 17 июня 17 июня марта 1972) голландский художник-график. Известен прежде всего своими концептуальными литографиями, гравюрами на дереве и металле, в которых он мастерски исследовал пластические аспекты понятий бесконечности и симметрии, а также особенности психологического восприятия сложных трёхмерных объектов марта 1972 художниклитографиямигравюрамибесконечностисимметриитрёхмерных
2 Автопортрет, 1929 г. Имя при рождении:Maurits Cornelis Escher Дата рождения: 17 июня июня 1898 Место рождения: Леуварден, Нидерланды Леуварден Нидерланды Дата смерти: марта 1972 (Ларен, Нидерланды) марта 1972Ларен Нидерланды Национальность:нидерландецнидерландец Гражданство:Нидерланды Жанр:художник-график художник Учёба: Школа архитектуры и декоративных искусств (Харлем) Влияние на: Жос де Мей, Сандро дель Пре, Иштван Орос[1], Роб Гонсалвес Жос де Мей Сандро дель Пре Иштван Орос[1]Роб Гонсалвес Награды:Две королевские награды, художественная премия Hilversum
3 Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это - тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.
4 ЗВЕЗДА Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.
9 ПОРЯДОК И ХАОС Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней части сферы.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.