Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемСвятослав Сукин
1 Платоновы тела Автор работы: Синица Саша 10 в
2 Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники. Платоновы тела - трехмерный аналог плоских правильных многоугольников. Доказательство того, что существует ровно пять правильных выпуклых многогранников, очень простое. Рассмотрим развертку вершины такого многогранника. Каждая вершина может принадлежать трем и более граням. Сначала рассмотрим случай, когда грани многогранника - равносторонние треугольники.
3 Согласно мнению, атомы основных элементов должны иметь форму различных Платоновых тел. огонь тетраэдр вода икосаэдр воздух октаэдр земля гексаэдр вселенная додекаэдр
4 ВЫПУКЛЫЕ ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ТЕТРАЭДР ГЕКСАЭДР ОКТАЭДР ДОДЕКАЭДР ИКОСАЭДР
5 Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла дадут в развертке 180°. Если теперь склеить развертку в многогранный угол, получится тетраэдр - многогранник, в каждой вершине которого встречаются три правильные треугольные грани. Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Добавление пятого треугольника даст угол 300° - мы получаем развертку вершины икосаэдра.
6 Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° - эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику. Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3x90°=270° - получается вершина куба, который также называют гексаэдром.
7 Добавление еще одного квадрата увеличит угол до 360° - этой развертке уже не соответствует никакой выпуклый многогранник. Три пятиугольные грани дают угол развертки 3*72°=216 - вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360° - поэтому останавливаемся. Для шестиугольников уже три грани дают угол развертки 3*120°=360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует. Таким образом, мы убедились, что существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.