1. История квадратного уравнения. 2. Геометричесий смысл. 3. Получение формулы для решения. 4. Уравнение с вещественными коэффициентами. 5. Уравнение.

Презентация:



Advertisements
Похожие презентации
Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением.
Advertisements

Алгебра 8 класс. Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана.
Алгебра 8 класс. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные.
Формулы корней квадратного уравнения.. Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ёщё.
1.Уравнение вида ax 2 +bx+c=0 называется … 2.Дискриминант находится по формуле D= … 3. Если D > 0, то квадратное уравнение имеет … 4. Если D =0, то уравнение.
Квадратные уравнения Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. 8 класс Презентация 1.
Квадратные уравнения цикл уроков алгебры в 8 классе по учебнику А.Г. Мордковича.
Способы решения.. Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные.
Квадратные уравнения Кв. уравнения в Древнем Вавилоне. Кв. уравнения в Древнем Вавилоне. Кв. уравнения в Индии. Кв. уравнения в Индии. Квадратные уравнения.
Квадратное уравнение – это уравнение вида ax 2 +bx+c=0, где a,b,c - заданные числа, х - неизвестное, a = 0 Квадратные уравнения. X 2 +bx+c=0.
Теорема Виета. Биография Франсуа Виет ( ) французский математик. Разработал почти всю элементарную алгебру. Известны «формулы Виета», дающие зависимость.
Квадратные уравнения ax2+bx+c=0. Уравнение вида ax 2 +bx+c=0 называется квадратным уравнением, где a 0. Число a – старший коэффициент уравнения Число.
Обобщающий урок по темеКвадратные уравнения и уравнения, приводимые к квадратным Обобщающий урок по темеКвадратные уравнения и уравнения, приводимые к.
1. Сформулируйте определение квадратного уравнения; 2. Назовите виды квадратных уравнений; 3. Расскажите алгоритм решения квадратного уравнения по формуле.
Решение квадратных уравнений. Формулы Виета.. Квадратные уравнения Уравнение вида ax 2 +bx+c=0, где а,b,c- некоторые коэффициенты, причем a не равно 0.
Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью.
Квадратные уравнения.. Автор: Бесфамильная Анна ученица 8-а класса Руководитель: Никифорова М.Н., учитель математики ГОУ СОШ 1968 Москва 2010г.
Задания с параметрами и их решения Автор: Шпак Анастасия, 9 класс Руководитель: Воробьёва В.Д., Учитель математики.
Всё о квадратном уравнении (многосерийный фильм)
10 способов решения квадратных уравнений История развития квадратных уравнений.
Транксрипт:

1. История квадратного уравнения. 2. Геометричесий смысл. 3. Получение формулы для решения. 4. Уравнение с вещественными коэффициентами. 5. Уравнение с комплексными коэффициентами. 6.Франсуа́ Вие́т. 7. Теорема Виета. 8. Разложение квадратного уравнения на множители. 9.Уравнения, сводящиеся к квадратным.

Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Квадратное уравнение описывает параболу. Решениями (корнями) квадратного уравнения называют точки пересечения параболы с осью координат. Если парабола, описываемая квадратным уравнением, не пересекается с осью координат, уравнение не имеет корней. Если парабола пересекается с осью координат в одной точке (в вершине параболы), уравнение имеет один корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось координат в двух точках, уравнение имеет два корня. Если коэффициент а положительный, ветви параболы направлены вверх и наоборот. Если коэффициент b положительный, то вершина параболы лежит в левой полуплоскости и наоборот.

Формулу можно получить следующим образом: ax2 + bx + c = 0 ax2 + bx = c Умножаем каждую часть на 4a и прибавляем b2: 4a2x2 + 4abx + b2 = 4ac + b2 (2ax + b)2 = 4ac + b2

Квадратное уравнение с вещественными коэффициентами может иметь от 0 до 2 вещественных корней в зависимости от значения дискриминанта D = b2 4ac: 1. при D > 0 корней два, и они вычисляются по формуле: 2. при D = 0 корень один (в некоторых контекстах говорят также о двух равных или совпадающих корнях), кратности 2: 3. при D < 0 вещественных корней нет. Существуют два комплексных корня, выражающиеся той же формулой (1) (без использования извлечения корня из отрицательного числа), либо формулой

В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше ее вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два простых корня).

(фр. François Viète, seigneur de la Bigotière; декабря 1603) выдающийся французский математик, один из основоположников алгебры. По образованию и основной профессии юрист.

Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).

Если известны оба корня квадратного уравнения, его можно разложить по формуле: В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности.

Уравнение вида является уравнением, сводящимся к квадратному. В общем случае оно решается заменой c последующим решением квадратного уравнения Также при решении можно обойтись без замены, решив совокупность двух уравнений и Если f(x) = x2, то уравнение принимает вид: ax4 + bx2 + c = 0 Такое уравнение называется биквадратным.