Комбинаторика и элементы теории вероятностей 11 класс Автор: Хайруллина Нина Николаевна учитель математики МБОУ «Октябрьская СОШ» Верхнеуслонский район.

Презентация:



Advertisements
Похожие презентации
МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Решение заданий В10 по материалам открытого банка задач ЕГЭ по математике Автор: Семёнова Елена Юрьевна.
Advertisements

ГИА Открытый банк заданий по математике. Задача 5 Лазутина Светлана Александровна учитель математики МОУ СОШ с. Троекурово.
Решение заданий В10 по материалам открытого банка задач ЕГЭ по математике 2013 года.
МОУ "Михайловская СОШ"1. Вероятностью события А называется отношение числа благоприятных для этого события исходов к числу всех равновозможных исходов.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ НА ЕГЭ ПО МАТЕМАТИКЕ Бердникова Е.Л. МБОУ СОШ 97 г. Кемерово.
В6 элементы теории вероятностей ГБОУ школа 255 Учитель математики Булатова Л.А.
Начать тестирование Введите фамилию и имя. из 1 1 Вася, Петя, Коля и Леша бросили жребий – кому начинать игру. Найдите вероятность того, что игру будет.
Однотипные задачи под номерами одного цвета. Чтобы увидеть решение задачи, кликните по тексту. Чтобы увидеть ответ к задаче, кликните по кнопке:
ТЕОРИЯ ВЕРОЯТНОСТЕЙ в заданиях ЕГЭ. Задачи из Открытого банка заданий ЕГЭ.
В10 ЕГЭ-2013 Простейшие вероятностные задачи. Решение заданий по материалам ЕГЭ Александрова О.С., учитель математики и информатики МОУ «СОШ 76» г.Саратова.
Работа учителя математики Зениной Алевтины Дмитриевны Уметь строить и исследовать простейшие математические модели Посмотреть прототипы Посмотреть прототипы.
Задание B10 ( ) В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ В ЗАДАЧАХ ЕГЭ И ГИА ГБОУ СОШ 762 г. Москва 2012.
Начать тестирование Введите фамилию и имя. из 1 ТЕОРИЯ ВЕРОЯТНОСТЕЙ Ответ: 1 Вася, Петя, Костя и Миша бросили жребий – кому начинать игру. Найдите вероятность.
Арсентьевой Анастасии 11 А класс.. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат.
Решение задач типа B10 Выполняли ученицы 11 А класса МАОУ СОШ 40 г.Томска Ечина Екатерина и Пономарева Анна 2012г.
Решение задач. По теме «Вероятность».. Задача Условие: Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со.
ГИА Модуль «РЕАЛЬНАЯ МАТЕМАТИКА» (19) Автор презентации: Контора Евгения Владимировна учитель математики МБОУ СОШ 3 г. Славянска – на - Кубани.
Решение задач В 10. Задание B10 ( ) На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 7 прыгунов из Голландии и 2 прыгуна из Боливии.
Решение задач по теории вероятности Андрей выбирает трехзначное число. Найдите вероятность того, что оно делится на 33. Решение. Как вычислить.
Транксрипт:

Комбинаторика и элементы теории вероятностей 11 класс Автор: Хайруллина Нина Николаевна учитель математики МБОУ «Октябрьская СОШ» Верхнеуслонский район Республика Татарстан

Теория вероятностей на ЕГЭ это очень простые задачи под номером В10. С ними справится каждый. Ведь для решения задачи B10 в варианте ЕГЭ понадобятся лишь самые основные понятия теории вероятностей. Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет. Вы выиграли в лотерею случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте тоже случайное событие.

Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Рассмотрим простой пример. Вы бросаете монетку. Орел или решка? Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием. Орел и решка два возможных исхода испытания. Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна 1/2.

Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть. Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом. Вероятность выпадения тройки равна 1/6 (один благоприятный исход из шести возможных). Вероятность четверки тоже 1/6 А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет. Вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Очевидно, что вероятность не может быть больше единицы.

Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ. 1. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»? Заметим, что задачу можно сформулировать по- другому: бросили три монеты одновременно. На решение это не повлияет. Как вы думаете, сколько здесь возможных исходов? Бросаем монету. У этого действия два возможных исхода: орел и решка Две монеты уже четыре исхода. Три монеты? Правильно, 8 исходов, т.к. Два орла и одна решка выпадают в трех случаях из восьми. Ответ: 0,375

Маша включает телевизор. Телевизор включается на случайном канале. В это время по девяти каналам из сорока пяти показывают новости. Найдите вероятность того, что Маша попадет на канал, где новости не идут. Решение: новости не идут по 45 – 9 = 36 каналам. Тогда вероятность того, что Маша попадет на канал, где новости не идут, равна Ответ: 0,8

На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что ему попадется выученный билет. Решение: Андрей выучил 60 – 3 = 57 вопросов. Поэтому вероятность того, что на экзамене ему попадется выученный билет равна Ответ: 0,95

В фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к заказчице приедет зеленое такси. Решение: вероятность того, что к заказчице приедет зеленое такси равна Ответ: 0,4

Аня с папой решили покататься на колесе обозрения. Всего на колесе двадцать две кабинки, из них 5 – желтые, 6 – белые, остальные – красные. Кабинки по очереди подходят к платформе для посадки. Найдите вероятность того, что Аня прокатится в красной кабинке. Решение: на колесе обозрения 22 – 5 – 6 = 11 красных кабинок. Тогда вероятность того, что Аня прокатится в красной кабинке равна Ответ: 0,5

На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней. Решение: вероятность того, что пирожок окажется с вишней равна Ответ: 0,25

Родительский комитет закупил 30 пазлов для подарков детям на окончание учебного года, из них 12 с картинками известных художников и 18 с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вове достанется пазл с животным. Решение: вероятность того, что Вове достанется пазл с животным, равна Ответ: 0,6

В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решение: в среднем из 1000 садовых насосов, поступивших в продажу, 1000 – 5 = 995 не подтекают, значит, вероятность того, что один случайно выбранный для контроля насос не подтекает, равна Ответ: 0,995

В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам. Решение: не встречается вопрос по неравенствам в 25 – 10 = 15 билетах. Тогда, вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна Ответ: 0,6

В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные – из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение: в чемпионате принимает участие 20 – (8 + 7) = 5 спортсменок из Китая. Тогда вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна Ответ: 0,25

Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Решение: дано 100 качественных сумок и восемь некачественных. Выберем из них одну случайным образом. Общее количество сумок, из которых будем выбирать: = 108. Это общее число возможных исходов. Количество благоприятных исходов равно количеству качественных сумок, то есть 100. Вероятность равна Округлим до сотых. Ответ: 0,93

В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 – из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции. Решение: всего в соревнованиях принимает участие = 25 спортсменов, значит, вероятность того, что спортсмен, который выступает последним, окажется из Швеции, равна Ответ: 0,36

На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая. Решение: вероятность того, что шестым будет выступать прыгун из Парагвая, равна Ответ: 0, 36

На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России. Решение: всего на семинар приехало = 10 ученых, значит, вероятность того, что восьмым окажется доклад ученого из России, равна Ответ: 0,3

Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Решение: на третий день запланировано выступлений. Значит, вероятность того, что выступление представителя из России состоится в третий день конкурса, равна Ответ: 0,225

Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Решение: в первом туре Руслан Орлов может сыграть с 26 – 1 = 25 бадминтонистами, из которых 9 – из России. Значит, вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна Ответ: 0,36

Катя дважды бросает игральный кубик. В сумме у нее выпало 6 очков. Найдите вероятность того, что при одном из бросков выпало 5 очков. Решение: число 6 можно получить пятью способами: 1+5, 2+4, 3+3, 4+2, 5+1. Из этих пяти случаев только два подходят под условие (1+5 и 5+1). Значит вероятность равна 2/5, то есть равна 0,4. Ответ: 0,4

Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при одном из бросков выпало 2 очка. Решение: чтобы выпало 8 очков за два броска, нужно чтобы при каждом бросании кубика число очков было больше 1. Получается, что 8 очков может выпасть только так: 2 и 6, 3 и 5, 4 и 4, 5 и 3, 6 и 2. Т.е. число всех исходов равно 5, а благоприятных равно 2. Вероятность того, что при одном из бросков выпало 2 очка, равна Ответ: 0,4

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых. Решение: Всего возможных комбинаций при вбрасывании двух кубиков: 6 * 6 = 36. Из них благоприятные исходы можно перечислить: Таким образом, всего благоприятных исходов 4. Вероятность найдем, как отношение числа 4 благоприятных исходов к числу всех возможных комбинаций 36. Округлим до сотых. Ответ: 0,11

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Решение: Всего возможных комбинаций при вбрасывании двух кубиков: 6 * 6 = 36. Из них благоприятные исходы можно перечислить: Таким образом, всего благоприятных исходов 5. Вероятность найдем, как отношение числа 5 благоприятных исходов к числу всех возможных комбинаций 36. Округлим до сотых. Ответ: 0,14

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 2 очка. Результат округлите до сотых. Решение: Всего возможных комбинаций при вбрасывании двух кубиков: 6 * 6 = 36. Из них благоприятный исход только один 1-й кубик – 1 очко, 2-й кубик – 1 очко. Общая сумма выпавших очков равна 2. Таким образом, всего благоприятных исходов 1. Вероятность найдем, как отношение числа 1 благоприятных исходов к числу всех возможных комбинаций 36. Округлим до сотых. Ответ: 0,03

Игральный кубик подбрасывают дважды. Определите вероятность того, что при двух бросках выпадет разное количество очков. Результат округлите до сотых. Решение: посчитаем число неблагоприятных исходов. Выпадет одинаковое число очков 1 и 1, 2 и 2, 3 и 3, 4 и 4, 5 и 5, 6 и 6. Таких неблагоприятных исходов 6. Всего исходов 36. Тогда благоприятных исходов 36 – 6 = 30. Вероятность найдем, как отношение числа 30 благоприятных исходов к числу всех возможных комбинаций 36. Округлим до сотых. Ответ: 0,83

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение: Какие возможны исходы двух бросаний монеты? 1) Решка, решка. 2) Решка, орел. 3) Орел, решка. 4) Орел, орел. Это все возможные события, других нет. Нас интересует вероятность 2-го или 3-го события. Всего возможных исходов 4. Благоприятных иcходов – 2. Отношение 2/4 = 0,5. Ответ: 0,5

1. math/probability.html ЕГЭ Математика: типовые экзаменационные варианты: 30 вариантов/под ред. А.Л.Семенова, И.В.Ященко. – М.: Национальное образование, – (ЕГЭ ФИПИ – школе) Список используемой литературы: