Дискретные случайные величины Лекция 14. План лекции Дискретные случайные величины. Закон распределения дискретной случайной величины. Функция распределения.

Презентация:



Advertisements
Похожие презентации
Непрерывные случайные величины Лекция 15. План лекции Непрерывные случайные величины. Закон распределения. Функции распределения и плотности распределения.
Advertisements

Числовые характеристики случайных величин Лекция 16.
Биномиальное распределение Лекция 17. План лекции 1.Повторные независимые испытания. Формула Бернулли. 2.Вероятность редких событий. Формула Пуассона.
Нормальный закон распределения Лекция 18. План лекции Нормальный закон распределения. Свойства нормального закона распределения Функции нормального закона.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 15. Тема: Случайные величины и их числовые характеристики.
Анализ случайных величин. Опр. Случайной называется величина, которая в результате опыта может принять то или иное возможное значение, неизвестное заранее,
Функции и их производные Лекция 7. План лекции Определение функции. Основные элементарные функции и их графики. Предел функции. Понятие производной функции.
Математическая статистика Случайные величины. Случайной называется величина, которая в результате испытания может принять то или иное возможное значение,
Основные понятия теории вероятностей Лекция 12. План лекции Случайные события и их классификация. Алгебра событий. Классическое и статистическое определение.
Величина называется случайной, если она принимает различные результаты при проведении опыта, причем вероятность каждого исхода различна. Случайная величина.
Неопределенный интеграл. Определенный интеграл. Лекция 9.
Случайная величина (СВ) 1. СВ – количественная характеристика случайного явления. Случайной называется такая величина, которая в результате опыта может.
Основные теоремы теории вероятностей Лекция 13. План лекции Условная вероятность. Теоремы умножения вероятностей для независимых и зависимых событий.
23 сентября 2012 г.23 сентября 2012 г.23 сентября 2012 г.23 сентября 2012 г. Лекция 9. Непрерывные распределения 9-1. Функция распределения 9-2. Плотность.
Проверка статистических гипотез Лекция 20. План лекции: 1.Проверка статистических гипотез. 2.Критерии асимметрии и эксцесса. 3.Критерий Пирсона.
Законы распределения случайных величин. Опр. Законом распределения дискретной случайной величины называется всякое соотношение, устанавливающее связь.
Теория вероятностей и математическая статистика Занятие 4. Дискретные и непрерывные случайные величины. Функция распределения. Плотность распределения.
Случайные погрешности Случайные погрешности неопределенны по своему значению и знаку и поэтому не могут быть исключены из результатов измерений, как систематические.
Теория матриц Лекция 5. План лекции: Понятие матрицы. Операции с матрицами. Определители, их свойства. Обратная матрица. Характеристическое уравнение.
Модель - случайная величина. Случайная величина (СВ) - это величина, которая в результате опыта может принять то или иное значение, причем заранее не.
Транксрипт:

Дискретные случайные величины Лекция 14

План лекции Дискретные случайные величины. Закон распределения дискретной случайной величины. Функция распределения дискретной случайной величины. Числовые характеристики дискретной случайной величины.

Случайная величина – это такая величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее какое именно.

Дискретные случайные величины Случайные величины, принимающие только отделенные друг от друга значения, которые заранее можно перечислить Примеры: - число выпадений орла при трех бросках монеты; - число попаданий в мишень при 10 выстрелах; - число вызовов, поступивших на станцию скорой помощи за сутки.

Непрерывные случайные величины Примеры: - артериальное давление пациента; - масса тела пациента; - скорость биохимической реакции в клетке. Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Закон распределения случайной величины может задаваться в виде: таблицы графика формулы (аналитически).

Ряд распределения Как связаны друг с другом вероятности событий и случайные величины? Случайные события: два броска монеты Случайная величина: число выпадений орла Случайное число выпадений орла 012 вероятность Р1Р1 Р2Р2 Р3Р3

Расчет вероятности реализации определенных значений случайного числа Число выпадений орла равно 0 – события: РР – вероятность 0,5 *0,5 =0, 25 Число выпадений орла равно 1 – события: Р0 или ОР – вероятность 0,5 *0,5 + 0,5*0,5 = 0,5 Число выпадений орла равно 2 – события: 00 – вероятность 0,5 *0,5 = 0,25 Сумма вероятностей: 0,25 + 0,50 + 0,25 = 1

Ряд распределения случайного числа выпадений орла при двух бросках монеты

Вычисление значений ряда распределений случайного числа Задача. Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4.За каждое попадание стрелку начисляется 5 очков. Построить ряд распределения числа выбитых очков. Вероятность событий: биномиальное распределение Обозначение события: попал – 1, не попал - 0 Полная группа событий: 000, 100, 010, 001, 110, 101, 011, 111 k = 0, 1, 2, 3

Ряд распределения случайного числа выбитых очков события число очков вероятность события0,2160,4320,2880,064

Операции сложения и умножения случайных величин Суммой двух случайных величин X и Y называется случайная величина, которая получается в результате сложения всех значений случайной величины X и всех значений случайной величины Y, соответствующие вероятности перемножаются X01 p0,20,70,1 Y123 p0,30,50,2

Операции сложения случайных величин Z = = =2 0+1 =1 0+2 =2 0+3 =3 1+1 =2 1+2 =3 1+3 =4 p 0,060,10,040,210,350,140,030,050,02 Z01234 p0,060,310,420,190,02

Операции умножения случайных величин Произведением двух случайных величин X и Y называется случайная величина, которая получается в результате перемножения всех значений случайной величины X и всех значений случайной величины Y, соответствующие вероятности перемножаются X01 p0,20,70,1 Y123 p0,30,50,2

Функция F(х) распределения вероятностей (или накопленной вероятности) равна вероятности того, что случайная величина Х меньше наперед заданного числа x. F(x) = P(Х

График функции распределения

Функция распределения числа выбитых очков

Свойства функции распределения F(X) 0 F(x) 1 F(X)- неубывающая функция Вероятность попадания случайной величины X в интервал (a,b) равна разности значений функции распределения в правом и левом концах интервала: P(a X < b)=F(b)-F(a) F(- )=0 F(+ )=1

Основные характеристики дискретных случайных величин Математическое ожидание (среднее значение) случайной величины равно сумме произведений значений, принимаемых этой величиной, на соответствующие им вероятности: М(x)=x 1 Р 1 + x 2 Р x n P n =

Дисперсия случайной величины – это математическое ожидание квадрата соответствующего отклонения случайной величины x i от ее математического ожидания: D(x) = M [x i – M(x)] 2 Среднее квадратическое отклонение

xixi PiPi x i P i (x i – M) 2 (x i – M) 2 P i 2 0,1 0,2 (2-3,6) 2 = 2,560,256 30,30,9 (3-3,6) 2 = 0,360,108 40,52 (4-3,6) 2 = 0,160,08 50,10,50,5 (5-3,6) 2 = 1,960,196 ПРИМЕР: Рассчитать основные числовые характеристики для числа заказов препарата, поступивших за 1 час M(x)=3,6 D(x)=0,64

Расчеты М(x)=2 0,1+3 0,3+4 0,5+5 0,1=3,6 D(x)=(2-3,6) 2 0,1+(3-3,6) 2 0,3+(4- 3,6) 2 0,5+(5-3,6) 2 0,1= 0,64 Число заказов=3,6 0,8

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА: Основная литература: Ганичева А.В., Козлов В.П. Математика для психологов. М.: Аспект-пресс, 2005, с Павлушков И.В. Основы высшей математики и математической статистики. М., ГЭОТАР-Медиа, Журбенко Л. Математика в примерах и задачах. М.: Инфра-М, Учебно–методические пособия: Шапиро Л.А., Шилина Н.Г. Руководство к практическим занятиям по медицинской и биологической статистике Красноярск: ООО «Поликом». – 2003.