Выполнили учащиеся 8 «б» класса: Шпакова Екатерина и Васильева Екатерина. Учитель: Шпакова Е.Н. 2009г.

Презентация:



Advertisements
Похожие презентации
Китай Наиболее ранние из дошедших до нас китайских математических текстов относится к концу 1 тысячелетия до н. э. Во 2 веке до н. э были написаны математико-
Advertisements

Достижения египтян в области математики: Имели представления о дробях и частях меры сыпучих тел Решали задачи по определению объёма усечённой пирамиды.
Учитель : Алтухова Юлия Вячеславна Выполнили: Латыпова Кристина Завацкая Анастасия, 6 3 класс Учебный проект по математике.
Вавилонские «тексты» доходят до нас в виде глиняных табличек, обычно примерно размера ладони,которые датируются от 2000 до н.э. и до 300 н.э. Они написаны.
Выполнила: Аламанкина М.Ю. Руководитель: Мироненко А.Е год МБОУ «Новоникольская средняя общеобразовательная школа»
«Зарождение математики в Древнем Египте» «Зарождение математики в Древнем Египте» Материалы к уроку в 5 классе Учитель Корух Е.В.
Геометрия в Древнем Египте Работу выполняла Сташкова Елена.
АлгебраАлгебра. Что же такое Алгебра? Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами.
V районная научно-практическая конференция «Наука. Творчество. Развитие.» Работа ученицы 5 класса МОУ «Сугутская СОШ» Таймуковой Карины Научный руководитель:
Периметр и площадь Презентацию подготовила Ученица 9 Т класса, лицея 35 Кириллова Анна.
Кроссворды 8 класс По горизонтали: 2. Единица с шестью нулями. 4. Единица площади, равная м2. 6. Отрезок, соединяющий центр окружности и любую точку.
Презентация к уроку по математике (2 класс) по теме: Проект ОРИГАМИ
Обозначение чисел и счёт в Древнем Египте Средняя общеобразовательная школа 125 с углублённым изучением математики. Ученицы 6б класса Школы 125 Сергеевой.
Брянский городской лицей 1 им.А.С.Пушкина Исследовательская работа по математике на тему: «Шестидесятеричная система Древнего Шумера» Выполнил: ученик.
Путешествие в историю чисел Выполнила ученица 6 класса Третьякова Анастасия Руководитель: учитель информатики Кулаева Н.А. с. Межениновка, декабрь 2011г.
Творческая работа ученика 9а класса Нефедова Владислава. Муниципальное учреждение «Средняя общеобразовательная школа 89» г. Северск Томской области.
Геометрия Египта. Математические тайны пирамид. Занятие 1 Это я знаю и помню прекрасно, или как египтяне использовали веревку.
Содержание курса математики основной школы Занятие 5.
- это способ представления чисел и соответствующие ему правила действий над числами Системы счисления можно разделить на: и.
МОУ Казачинская СОШ Кутимская Евгения Александровна.
Транксрипт:

Выполнили учащиеся 8 «б» класса: Шпакова Екатерина и Васильева Екатерина. Учитель: Шпакова Е.Н. 2009г

1.Титульный лист. 2.План. 3.Древний восток. 4.Методы вычисления. 5.Геометрия в странах пирамид. 6.Возникновение шестидесятеричной системы вычисления. 7.Китай в картинках. 8.Рукописи. 9.Счёт. 10.Теория чисел. 11.Геометрия в Китае. 12.Геометрия оригами. 13.Историческая справка. 14.Базовые формы. 15.Вывод. 16. Список используемой литературы.

Все правила счета древних египтян основывались на умении складывать и вычитать, удваивать числа и дополнять дроби до единицы. Умножение и деление сводили к сложению при помощи особой операции многократного удвоения или раздвоения чисел. Выглядели такие расчеты довольно громоздко.

Известно, что в середине 1 тысячелетия до н. э. для построения прямого угла египтяне использовали веревку, разделенную узлами на 12 равных частей. Концы веревки связывали и затем натягивали на 3 колышка. Если стороны относились как 3:4:5, то получался прямоугольный треугольник. И это-единственный прямоугольный треугольник, который знали в Древнем Египте. В папирусах нет задач, как-либо связанных с теоремой Пифагора, хотя до расшифровки математических текстов существовало мнение, что древние египтяне были с ней знакомы.

Шестидесятеричная система счисления, по-видимому, сложилась при торговых сделках между двумя древними народами Месопотамии -шумерами и аккадцами. У шумеров»денежной единицей» служила мина-кучка серебра. Это была крупная сумма, и при продаже недорогих товаров ее обычно делили пополам, а каждую половину еще на три части, так, что шестая часть мины широко использовалась при расчетах. У аккадцев в ходу была своя монета-шеккель. При сделках между шумерами и аккадцами шестая часть мины приравнивалась к 10 шеккелям, т.е. мина составляла 60 шеккелей.В результате появились знаки для чисел 1, 10, 60, 600,3600. Это произошло около 5 тыс. лет назад. Знаки выдавливались тупым концом палочки для письма на глиняных табличках. Позднее они превратились в клинья и уголки.

Китай

Наиболее ранние из дошедших до нас китайских математических текстов относится к концу 1 тысячелетия до н. э. Во 2 веке до н. э были написаны математико- астраномический «Трактат об измерительном шесте» и «Математика в девяти книгах». Позднее, уже в 7 веке, оба сочинения вошли в сборник «Десять классических трактатов», который изучали в течении многих столетий.

С глубокой древности счет в Китае вели десятками. Примерно с 4 века до н. э стали считать с помощью специальных палочек. Они были в ходу на протяжении более полутора тысячи лет. Палочки раскладывали на счетной доске, которая, как полагают была разлинована на строки и столбцы. Если какой-то разряд в числе отсутствовал, то соответствующая ячейка оставалась пустой. Так что китайская нумерация с помощью счетных палочек- древнейшая из десятичных позиционных систем.

В трактате «Математика в девяти книгах» объясняется, как извлечь квадратный и кубический корни с помощью формулы квадрата и куба суммы двух чисел. Поскольку китайские математики вели счет на доске, их способ имел некоторые особенности. Позже он был обобщен для случая любого корня и вообще для численного решения уравнения n-й степени. Метод получил название «тянь-юань» (буквально небесный элемент) -так китайцы обозначили неизвестную величину. Впоследствии метод «тянь-юань» развили и разработали китайские алгебраисты веков.

Геометрия в Древнем Китае не развилась в самостоятельную науку, как это произошло в Древней Греции. В первой книге «Математики в девяти книгах» приводятся отдельные правила измерения площадей прямоугольника, треугольника, трапеции, круга, его сектора и сегмента. В пятой книге рассматриваются объемы прямого параллелепипеда, в основании которого лежит квадрат, прямые призмы с трапецеидальным и треугольным основаниями, пирамиды с квадратными и прямоугольными основаниями и другие геометрические фигуры.

Историческая справка. Оригами- искусство складывания из бумаги, без ножниц и клея. «Ори» в переводе с японского «складывать», «гами»- бумага.

Со времён людей Древнего Востока известно, что занятие математикой приучает правильно и последовательно мыслить, рассуждать. Математика раскрывает человеку особый мир чисел и фигур, окружающий нас.

Список используемой литературы. 1.Интернет. 2.FOS. 3.Большая энциклопедия школьника. 4.В.В.Выгонов «Трёхмерное оригами»