Цель История Правильные многогранники Виды правильных многогранников - ТетраэдрТетраэдр - КубКуб - ОктаэдрОктаэдр - ДодекаэдрДодекаэдр - ИкосаэдрИкосаэдр.

Презентация:



Advertisements
Похожие презентации
Правильные многогранники. Элементы симметрии правильных многогранников. Урок геометрии в 10 классе Учитель: Мещерякова Елена Викторовна.
Advertisements

Понятие правильного многогранника. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона ( до н. э.) "Тимаус".
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ Правильные многогранники были известны еще в древней Греции. Пифагор и его ученики считали, что все состоит из атомов, имеющих.
Закирянова Зульфия Назиповна, МВ(С)ОШ 3, г.Нижневартовск.
«Правильные многогранники» Работа учениц 10 класса «Б» Латышевой Насти Бычковой Сони.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ «Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных.
Правильные выпуклые многогранники Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник.
Презентацию составил Ученик 9 «А» класса ГОУ ЦО 18 Палов Артем.
Двойственные многогранники Два правильных многогранника называются двойственными, если центры граней одного из них являются вершинами другого.
Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников.
Многогранники вокруг нас или мы внутри многогранника?
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
ГОУ НПО «Профессиональный лицей 31» Г. Мосальск Калужской области Преподаватель математики Синюкова Т.Н.
С глубокой древности человеку известны пять удивительных многогранников.
1 Правильные многогранники Правильные многогранники Материалы к уроку геометрии в 10 классе.
Правильные многогранники Содержание Понятие Разновидности правильных многогранников Немного истории Немного истории Об авторе.
Правильные многогранники Выполнил Батурин Евгений.
Многогранники Правильные. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины.
Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
Определение: многогранник называется правильным, если все его грани правильные многоугольники и, кроме того, в каждой вершине сходится одинаковое число.
Транксрипт:

Цель История Правильные многогранники Виды правильных многогранников - ТетраэдрТетраэдр - КубКуб - ОктаэдрОктаэдр - ДодекаэдрДодекаэдр - ИкосаэдрИкосаэдр Интересные факты Вывод Источники информации

Цель проекта - знакомство с правильными многогранниками. Знать определение правильного многогранника, отличать их от многогранников, не являющихся правильными, знать виды правильных многогранников.

Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона ( до н. э.) "Тимаус". Поэтому правильные многогранники также называются платоновыми телами (хотя известны они были задолго до Платона). Каждый из правильных многогранников, а всего их пять. Платон ассоциировал с четырьмя "земными" элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с "неземным" элементом - небом (додекаэдр).

Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его вершине сходится одинаковое число граней все его двухгранные углы равны

У грани тетраэдра 3 стороны, к вершинам примыкают 3 ребра, всего – 4 вершин, 6 ребер и 4 грани.

У грани куба 4 стороны, к вершинам примыкают 3 ребра, всего – 8 вершин, 12 ребер и 6 грани.

У грани октаэдра 3 стороны, к вершинам примыкают 4 ребра, всего – 6 вершин, 12 ребер и 8 грани.

У грани додекаэдра 5 стороны, к вершинам примыкают 3 ребра, всего – 20 вершин, 30 ребер и 12 грани.

У грани икосаэдра 3 стороны, к вершинам примыкают 5 ребра, всего – 12 вершин, 30 ребер и 20 грани.

Отметим интересный факт, связанный с гексаэдром (кубом) и октаэдром. Куб имеет 6 граней, 12 ребер и 8 вершин, а октаэдр – 8 граней, 12 ребер и 6 вершин. То есть число граней одного многогранника равно числу вершин другого и наоборот. Как говорят, куб и гексаэдр являются двойственными друг к другу. Это также проявляется в том, что если взять куб и построить многогранник с вершинами в центрах его граней, то, как несложно убедиться, получится октаэдр. Верно и обратное – центры граней октаэдра служат вершинами куба. В этом-то и состоит двойственность октаэдра и куба (рис). Несложно сообразить, что если взять центры граней правильного тетраэдра, то мы вновь получим правильный тетраэдр (рис). Таким образом, тетраэдр двойственен самому себе.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12

Знаменитый математик и астроном Кеплер построил модель Солнечной системы как ряд последовательно вписанных и описанных правильных многогранников и сфер. Каков же порядок расположении планет (в соответствии с "требованиями" правильных многогранников) получился у Кеплера? В сферу орбиты Сатурна был вписан куб, в него - сфера орбиты Юпитера; в эту сферу вписался тетраэдр, в него - сфера орбиты Марса; далее: додекаэдр - сфера орбиты Земли - икосаэдр - сфера орбиты Венеры - октаэдр - сфера орбиты Меркурия.

Мы познакомились с правильными многогранниками и научились отличать их от простых многогранников. Изучили их вид и особенности.