Поверхность как объект пространства Понятие «поверхность» в начертательной геометрии связано с представлением о кинематическом способе ее образования:

Презентация:



Advertisements
Похожие презентации
Простая поверхность Простая поверхность Никольская Анна ГОУ школа 548 с углубленным изучением английского языка. Проект представляет: Руководитель проекта:
Advertisements

Лекция 7 Поверхности. Классификация, образование, задание на чертеже. Каркас. Определитель поверхности.
Лекция 10 Пересечение поверхности плоскостью. При пересечении поверхности или какой-либо геометрической фигуры плоскостью получается фигура, которая называется.
Определение и задание на чертеже Определение Поверхность Поверхность – совокупность всех последовательных положений движущейся линии (образующей) в пространстве.
Автор: канд. воен. наук, доцент ТЕЛЬНОЙ В.И. Эпюр 2: «ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ»
Поверхности вращения. Поверхности вращения – это поверхности созданные при вращении образующей m вокруг оси i (рис.96). Геометрическая часть определителя.
Лекция 6 Сечение поверхности плоскостью. Алгоритм решения задачи 1. Объекты ( и ) рассекают вспомогательной секущей плоскостью Г 2. Находят линию пересечения.
Линейчатые поверхности Образование поверхностей. Линейчатой поверхностью называется поверхность, образованная перемещением прямолинейной образующей по.
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ. Замкнутая фигура, образованная линией пересечения поверхности тела секущей плоскостью, называется сечением.
Взаимное пересечение поверхностей Вид линии пересечения зависит от сочетаний пересекающихся поверхностей ДВЕ ПОВЕРХНОСТИ ВРАЩЕНИЯ (ОБЩИЙ СЛУЧАЙ) ЛИНИЯ.
Лекция 5 Взаимное положение поверхности и плоскости. Пересечение поверхности плоскостью. Пересечение поверхностей Казанский государственный энергетический.
Лекция 7 Пересечение поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей. Способ вспомогательных секущих плоскостей.
Поверхности вращения. Поверхность α, образованная вращением образующей вокруг неподвижной оси i, называется поверхностью вращения.
Лекция 12 Взаимные пересечения поверхностей. Пересечение поверхностей Из линейной алгебры (многомерной геометрии) хорошо известно, что в расширенном евклидовом.
Тема A Понятие о телах вращения. Тема урока Говорят, что фигура Ф в пространстве получена вращением фигуры F вокруг оси а, если точки фигуры Ф получаются.
Поверхности второго порядка. Эллипсоид.. Цилиндрические поверхности Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих.
Сечения конуса. Если плоскость образует с осью конуса угол, больший, чем угол между образующей и этой осью, то в сечении конической поверхности получается.
Подготовила: Ученица 11 класса Черемушкина Ирина Учитель: Киселева Галина Петровна МОУ Поваренская СОШ 2009 год.
Конус Подготовил: Киселев Саша. Учитель: Киселёва Г.П 2009 г.
Проект подготовила ученица 11 класса Ламонова Светлана Руководитель: учитель математики Стрельникова Л.П год. Новотроицкая СОШ.
Транксрипт:

Поверхность как объект пространства Понятие «поверхность» в начертательной геометрии связано с представлением о кинематическом способе ее образования: Поверхность – непрерывное двухпараметрическое множество последовательных положений линии, перемещающейся в пространстве по определенному закону. Подвижная линия l называется образующей; Неподвижная m, n, p, задающая направление перемещения, – направляющей. Q m1m1 m2m2 m3m3 L3L3 L2L2 L1L1

Для задания поверхности на чертеже выбирают такую совокупность независимых геометрических условий, которая однозначно определяет данную поверхность в пространстве. Эта совокупность называется определителем поверхности. Обозначим определитель буквой G. Формула определителя выглядит так: G = { Г х А }, где Г – геометрическая часть А – алгоритмическая часть Геометрическая часть - совокупность геометрических фигур, с помощью которых можно образовать поверхность. Алгоритмическая часть - алгоритм формирования поверхности при помощи фигур, входящих в геометрическую часть определителя. Определитель часто задают словесно.

Одна и та же поверхность может быть образована различными способами, следовательно иметь несколько определителей. а) цилиндр образован вращением прямой образующей L вокруг неподвижной оси i; направляющая m – окружность, центр которой лежит на оси цилиндра. G 1 = { (L,i,m ) ( A 1 ) } L m i б) образующая - окружность с центром на оси цилиндра. G 2 = { ( m, i ) ( A 2 ) } i O m

Поверхность на чертеже задают проекциями геометрической части ее определителя. Задание поверхности проекциями геометрической части ее определителя не обеспечивает наглядности изображений. Поэтому прибегают к построению очерков ее проекций.

Классификация поверхностей При классификации поверхностей основополагающим является способ образования и свойства поверхности. По виду образующей: Линейчатые (образующая – прямая линия) Нелинейчатые (образующая – кривая линия)

Линейчатые поверхности: Развертывающиеся Неразвертывающиеся Нелинейчатые поверхности: С образующей постоянной формы (поверхности вращения и трубчатые пов-ти) С образующей переменной формы (циклические пов-ти) Циклическая поверхность

По закону движения образующей линии: поверхности вращения; винтовые поверхности; поверхности с плоскостью параллелизма; поверхности параллельного переноса. Поверхности вращения созданы при вращении образующей m вокруг оси i G = { (i,m ) ( A 1 ) }

Гиперболоид вращения Сфера Сфероид Вытянутый эллипсоид Тор

Винтовые поверхности Поверхности параллельного переноса

Поверхности с плоскостью параллелизма Цилиндроид Коноид Гиперболический параболоид

Задачи позиционные Задачи на взаимную принадлежность геометрических образов Задачи на взаимное пересечение геометрических образов

Точка и линия на поверхности Точка принадлежит плоскости, если она принадлежит прямой, лежащей в данной плоскости. Точка принадлежит поверхности, если она принадлежит линии, лежащей в данной поверхности. Прямая принадлежит плоскости, если она имеет с ней две общие точки Линия принадлежит поверхности, если имеет с ней n-ное количество общих точек.

Плоские сечения Плоскости Общего положенияЧастного положения Проецирующие Плоскости уровня О R x y z R1R1 z O x y S2S2 S T T3T3 O x y z

Горизонтально проецирующая плоскость

Фронтально проецирующая плоскость

Горизонтальная плоскость

Фронтальная плоскость

Плоские сечения поверхности КОНУСА

Сечения конуса: а) – окружность; секущая плоскость перпендикулярна оси конуса (плоскость Г); б) – эллипс; секущая плоскость наклонна к оси конуса и пересекает все образующие конуса (плоскость R); в) – парабола; секущая плоскость параллельна одной образующей (плоскость Т); г) – гипербола; секущая плоскость параллельна двум образующим (плоскости Р и Q); д) – прямые ( по образующим или «треугольник» ); секущая плоскость проходит через вершину конуса (плоскость W).

АЛГОРИТМ ПОСТРОЕНИЯ ПЛОСКОГО СЕЧЕНИЯ ПОВЕРХНОСТИ ВРАЩЕНИЯ 1. ВЫПОЛНИТЬ АНАЛИЗ УСЛОВИЯ: ОПРЕДЕЛИТЬ ФИГУРУ СЕЧЕНИЯ. 2. ПОСТРОИТЬ ХАРАКТЕРНЫЕ ТОЧКИ; ТОЧКИ ОБОЗНАЧИТЬ. 3. ПОСТРОИТЬ ДОПОЛНИТЕЛЬНЫЕ ТОЧКИ. 4. ВСЕ ПОЛУЧЕННЫЕ ТОЧКИ СОЕДИНИТЬ ПЛАВНОЙ КРИВОЙ С УЧЕТОМ ВИДИМОСТИ. ГЕОМЕТРИЧЕСКОЕ ТЕЛО считать Н Е П Р О З Р А Ч Н Ы М.

ПОСТРОЕНИЕ ЭЛЛИПСА ЭЛЛИПС – ДВАЖДЫ СИММЕТРИЧНАЯ КРИВАЯ. НЕОБХОДИМО ПОСТРОЕНИЕ ДВУХ ЕГО ОСЕЙ: БОЛЬШОЙ и МАЛОЙ ОСИ ЭЛЛИПСА ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫ и ДЕЛЯТ ДРУГ ДРУГА ПОПОЛАМ в ТОЧКЕ ПЕРЕСЕЧЕНИЯ. ПОЭТОМУ ДЛЯ ПОСТРОЕНИЯ ВТОРОЙ ОСИ СЛЕДУЕТ НАЙТИ СЕРЕДИНУ ПЕРВОЙ.

П А Р А Б О Л А

Плоские сечения поверхности ЦИЛИНДРА ( ФРОНТАЛЬНАЯ ПРОЕКЦИЯ )

СЕЧЕНИЕ СФЕРЫ - ОКРУЖНОСТЬ ПРИ ЛЮБОМ ПОЛОЖЕНИИ СЕКУЩЕЙ ПЛОСКОСТИ Плоские сечения поверхности СФЕРЫ

АЛГОРИТМ ПОСТРОЕНИЯ ПРОЕКЦИЙ ТЕЛА С ВЫРЕЗОМ 1. ВЫПОЛНИТЬ АНАЛИЗ УСЛОВИЯ: продолжить все заданные секущие плоскости до полного пересечения с поверхностью. ОПРЕДЕЛИТЬ ФИГУРЫ СЕЧЕНИЯ ОТ КАЖДОЙ СЕКУЩЕЙ ПЛОСКОСТИ ВЫРЕЗА. 2. ПОСТРОИТЬ ПОЛНЫЕ ФИГУРЫ СЕЧЕНИЯ ОТ КАЖДОЙ СЕКУЩЕЙ ПЛОСКОСТИ. 3. ИЗ ПОЛУЧЕННЫХ ФИГУР СЕЧЕНИЯ СФОРМИРОВАТЬ ВЫРЕЗ. 4. ВЫПОЛНИТЬ ОБВОДКУ ЗАДАЧИ С УЧЕТОМ ВИДИМОСТИ. ГЕОМЕТРИЧЕСКОЕ ТЕЛО СЧИТАТЬ Н Е П Р О З Р А Ч Н Ы М.

СЕЧЕНИЕ МНОГОГРАННИКА - МНОГОУГОЛЬНИК