Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…

Презентация:



Advertisements
Похожие презентации
Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника…
Advertisements

Треугольники Треугольник называется остроугольным если у него все углы острые (рис. 1). Треугольник называется прямоугольным если у него есть прямой угол.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Перпендикуляр Перпендикуляром, опущенным из точки A на прямую а, называется отрезок AB, соединяющий точку A с точкой B прямой a, перпендикулярный прямой.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Равнобедренные треугольники Треугольник называется равнобедренным, если у него две стороны равны (рис. 1). Эти равные стороны называются боковыми сторонами,
Докажите, что если в треугольниках ABC и A 1 B 1 C 1 AB = A 1 B 1, AC = A 1 C 1, медиана СM равна медиане С 1 M 1, то треугольники ABC и A 1 B 1 C 1 равны.
Площадь треугольника Теорема 1. Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне. Следствие. Площадь.
Второй признак подобия треугольников Теорема. (Второй признак подобия.) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника.
Теорема 1 Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник.
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Трапеция Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Трапеция называется равнобедренной, если.
Теорема синусов Теорема. (Теорема синусов.) Стороны треугольника пропорциональны синусам противолежащих углов. Причем отношение стороны треугольника к.
Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним. Доказательство. Пусть АВС – произвольный треугольник. Рассмотрим,
Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.
Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Прямоугольник. Прямоугольник Чем прямоугольник отличается от параллелограмма?
Транксрипт:

Прямоугольные треугольники Треугольник называется прямоугольным, если … у него есть прямой угол. Гипотенузой называется сторона прямоугольного треугольника… противолежащая прямому углу. Остальные две стороны прямоугольного треугольника называются … катетами.

Признак 1 Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны. Теорема. Доказательство аналогично доказательству третьего признака равенства треугольников.

Признак 2 Теорема. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Доказательство: Пусть в прямоугольных треугольниках ABC и A 1 B 1 C 1 равны гипотенузы AB и A 1 B 1 и острые углы A и A 1. Предположим, что AC и A 1 C 1 не равны. На луче A 1 C 1 от его начала A 1 отложим отрезок AC. При этом точка C перейдет в точку C, отличную от C. Треугольники ABC и A 1 B 1 C будут равны по первому признаку. Тогда угол A 1 CB 1 будет прямым, и в треугольнике B 1 CC 1 будет два прямых угла. Противоречие. Следовательно, AC должен равняться A 1 C 1 и, значит, данные треугольники равны по первому признаку.

Вопрос 1 Какой треугольник называется прямоугольным? Ответ: Прямоугольным называется треугольник, у которого есть прямой угол.

Вопрос 2 Какая сторона называется гипотенузой прямоугольного треугольника? Ответ: Гипотенузой называется сторона прямоугольного треугольника, противолежащая прямому углу.

Вопрос 3 Какие стороны называется катетами прямоугольного треугольника? Ответ: Катетами называются стороны прямоугольного треугольника, противолежащие острым углам.

Вопрос 4 Что больше, катет или гипотенуза прямоугольного треугольника? Ответ: Гипотенуза.

Упражнение 1 Может ли прямоугольный треугольник иметь стороны 4, 5, 5? Ответ: Нет.

Упражнение 2 Может ли прямоугольный треугольник иметь катеты 11 см и 111 см? Ответ: Да.

Упражнение 3 Может ли прямоугольный треугольник иметь тупой угол? Ответ: Нет.

Упражнение 4 Могут ли неравные прямоугольные треугольники иметь соответственно равные катеты? Ответ: Нет.

Упражнение 5 Может ли прямоугольный треугольник быть: а) равнобедренным; б) равносторонним? Ответ: а) Да, б) нет.

Упражнение 6 Стороны прямоугольного треугольника равны 3 см, 4 см, 5 см. Чему равна гипотенуза? Ответ: 5 см.

Упражнение 7 Верно ли, что если катет и острый угол одного прямоугольного треугольника равны катету и острому другого прямоугольного треугольника, то такие треугольники равны? Ответ: Нет, пример приведен на рисунке.

Упражнение 8 Докажите, что высоты, проведенные к боковым сторонам равнобедренного треугольника, равны. Доказательство: Пусть ABC – равнобедренный треугольник (AC = BC), AD и BD – высоты. Прямоугольные треугольники ABD и BAE равны по гипотенузе и острому углу. Значит, AD = BE.

Упражнение 9 Докажите, что если две высоты треугольника равны, то этот треугольник – равнобедренный. Доказательство: Пусть в треугольнике ABC высоты AD и BE равны. Прямоугольные треугольники ABD и BAE равны по гипотенузе и катету. Значит, B = A и, следовательно, треугольник ABC – равнобедренный.

Упражнение 10 В треугольнике KLM проведена медиана LN. Докажите, что высоты треугольников MLN и KLN, проведенные соответственно из вершин M и K, равны. Доказательство: Прямоугольные треугольники KNP и MNQ равны по гипотенузе и острому углу. Следовательно, KP = MQ.

Упражнение 11 В прямоугольном треугольнике ABC ( С = 90 о ) проведена медиана BD. Какой из углов больше ABD или CBD? Решение: Продолжим BD и отложим DE = BD. Треугольники BCD и AED равны. Следовательно, углы CBD и E равны. Так как BC < AB, то AE < AB и, значит, ABD < E = CBD.

Упражнение 12 В прямоугольном треугольнике ABC ( С = 90 о ) проведена биссектриса BE. Какой из отрезков больше AE или CE? Решение: Отложим на стороне BA отрезок BF = BC. Треугольники BCE и BFE равны. Следовательно, CE = EF. Так как EF < AE, то CE < AE.

Упражнение 13 По данному рисунку укажите способ нахождения расстояния между недоступными объектами A и B.

Упражнение 14 По данному рисунку укажите способ нахождения расстояния между недоступными объектами A и B.

Упражнение 15 Изобразите какой-нибудь прямоугольный треугольник, гипотенузой которого является отрезок AB, а вершина C находится в одном из узлов сетки. Ответ:

Упражнение 16 Изобразите какой-нибудь прямоугольный треугольник, гипотенузой которого является отрезок AB, а вершина C находится в одном из узлов сетки. Ответ:

Упражнение 17 Изобразите какой-нибудь равнобедренный прямоугольный треугольник, катетом которого является отрезок AC, а вершина C находится в одном из узлов сетки. Найдите его гипотенузу, если стороны клеток равны 1. Ответ: 4.

Упражнение 18 Изобразите какой-нибудь прямоугольный треугольник, катетом которого является отрезок AC, а вершина B находится в одном из узлов сетки. Ответ:

Упражнение 19 Изобразите какой-нибудь прямоугольный треугольник, гипотенузой которого является отрезок AB, а вершина C находится в одном из узлов сетки. Найдите его катет, если стороны клеток равны 1. Ответ: 3.

Упражнение 20 Изобразите какой-нибудь прямоугольный треугольник, гипотенузой которого является отрезок AB, а вершина C находится в одном из узлов сетки. Ответ: