Симметрия – в переводе с греческого соразмерность (однородность, пропорциональность, гармония) Математически строгое представление о симметрии сформировалось.

Презентация:



Advertisements
Похожие презентации
« Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство » Герман Вейль.
Advertisements

Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников.
Точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О – центр симметрии. Точка О считается симметричной.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Трёхгранные и многогранные углы: Трёхгранным углом называется фигура образованная тремя плоскостями, ограни- ченными тремя лучами, исходящими из одной.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Правильные многогранники. СИММЕТРИЯ В ПРОСТРАНСТВЕ Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту.
МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
П РАВИЛЬНЫЕ М НОГОГРАННИКИ. ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом.
Симметрия относительно точки Симметрия относительно прямой А А 1 А 1 А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии),
Правильные многогранники. План изучения темы 1. Симметрия в пространстве, виды симметрии 2. Примеры симметрии в окружающем нас мире 3. Правильный многогранник,
Определение: многогранник называется правильным, если все его грани правильные многоугольники и, кроме того, в каждой вершине сходится одинаковое число.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Понятие правильного многогранника. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона ( до н. э.) "Тимаус".
Правильные многогранники Выполнил Батурин Евгений.
Многогранники Правильные. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины.
Правильные выпуклые многогранники Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник.
Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
Правильные многогранники. Элементы симметрии правильных многогранников. Урок геометрии в 10 классе Учитель: Мещерякова Елена Викторовна.
Транксрипт:

Симметрия – в переводе с греческого соразмерность (однородность, пропорциональность, гармония) Математически строгое представление о симметрии сформировалось сравнительно недавно – в XIX веке. В наиболее простой трактовке (по Г. Вейлю) современное определение симметрии выглядит примерно так: симметричным называется такой объект, который можно как-то изменять, получая в результате то же, с чего начали. Что такое симметрия?

Симметрия в пространстве Центральная Осевая Зеркальная (симметрия относительно плоскости)

Центральная симметрия Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА 1. Точка О считается симметричной самой себе. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Осевая симметрия Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему. Каждая точка прямой а считается симметричной самой себе. Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

Зеркальная симметрия Две точки А и А 1 называются симметричными относительно плоскости, если эта плоскость проходит через середину отрезка АА 1 и перпендикулярна к нему. Каждая точка плоскости считается симметричной самой себе. Фигура называется симметричной относительно плоскости, если для каждой точки фигуры симметричная ей точка относительно плоскости, также принадлежит этой фигуре. Плоскость, называется плоскостью симметрии фигуры. Говорят также, что фигура обладает зеркальной симметрией.

Многогранники Однородные выпуклые Однородные невыпуклые Тела Архимеда Тела Платона Выпуклые призмы и антипризмы Тела Кеплера- Пуансо Невыпуклые полуправильные однородные многогранники Невыпуклые призмы и антипризмы

Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.

Т етраэдр составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180º. Правильные многогранники Икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300º. Октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240º.

Куб (гексаэдр) составлен из шести квадратов. Каждая его вершина является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270º. Правильные многогранники Додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324º.

пришли из Древней Греции, в них указывается число граней: «эдра» грань; «тетра» 4; «гекса» 6; «окта» 8; «икоса» 20; «додека» 12. Названия многогранников Названия многогранников