Тема: Аксиомы стереометрии. Выполнила презентацию: Твердюкова Ирина Валерьевна учитель математики I категории МОУ «Средняя общеобразовательная школа 60.

Презентация:



Advertisements
Похожие презентации
Тема: Аксиомы стереометрии.. ГЕОМЕТРИЯ ПЛАНИМЕТРИЯСТЕРЕОМЕТРИЯ ( это раздел геометрии, в котором изучаются свойства фигур на плоскости) ( это раздел геометрии,
Advertisements

Аксиомы стереометрии. Некоторые следствия из аксиом. МОУ СОШ 256 г. Фокино + СПб Медицинский техникум 9.
Аксиомы стереометрии Некоторые следствия из аксиом.
Аксиомы стереометрии. Некоторые следствия из аксиом.
Предмет стереометрии. Аксиомыстереометрии.. ПЛАНИМЕТРИЯ ГЕОМЕТРИЯ ШКОЛЬНЫЙ КУРС ГЕОМЕТРИИ СТЕРЕОМЕТРИЯ planum плоскость stereos пространство.
Аксиомы стереометрии. Некоторые следствия из аксиом
Аксиомы стереометрии. геометрия 10 класс урок 1. Выполнила учитель математики МОУ СОШ 31 г Краснодара Шеремета И.В.
Аксиомы стереометрии. Если теорему так и не смогли доказать, она становится аксиомой. Евклид Выполнила учитель математики МОУ СОШ 31 г Краснодара Шеремета.
Стереометрия ТЕМА: 2.1 АКСИОМЫ СТЕРЕОМЕТРИИ. НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ АК ВГУЭС Преподаватель БОЙКО ВЕРА ИВАНОВНА.
Муниципальное образовательное учреждение «Средняя общеобразовательная школа 1» Название урока: «Предмет стереометрии» Урок разработан: учителем математики.
А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Аксиомы стереометрии Автор: Семенова Елена Юрьевна МОУ СОШ 5 – «Школа здоровья и развития» г.Радужный.
СТЕРЕОМЕТРИЯ - РАЗДЕЛ ГЕОМЕТРИИ, В КОТОРОМ ИЗУЧАЮТСЯ СВОЙСТВА ФИГУР В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ФИГУРЫ В ПРОСТРАНСТВЕ – ТОЧКА ПРЯМАЯ ПЛОСКОСТЬ А а ГЕОМЕТРИЧЕСКИЕ.
АКСИОМЫ СТЕРЕОМЕТРИИ Предмет стереометрии Средняя образовательная школа 10 имени летчика-космонавта А.Г. Николаева Выполнил: Михайлов Алексей,10а.
Диктант. Необходимо ответить на вопросы: 1 вариант.2 вариант 1. Назовите основные фигуры на плоскости. 1. Назовите основные фигуры в пространстве. 2.
Курсовая работа слушателя курсов « Информационно - коммуникационное сопровождение обучения математике » Савицкой Галины Ивановны Преподавателя ГБОУ НПО.
Аксиомы стереометрии. Стереометрия Аксиома – утверждение, не требующее доказательства. В аксиомах стереометрии выражаются основные свойства точек, прямых.
Аксиомы стереометрии и их простейшие следствия.. Геометрия Планиметрия Объекты: точка прямая Стереометрия Объекты: точка прямая плоскость.
Основные понятия и аксиомы стереометрии
Стереометрия – это раздел геометрии, в котором изучаются фигуры в пространстве.
Транксрипт:

Тема: Аксиомы стереометрии. Выполнила презентацию: Твердюкова Ирина Валерьевна учитель математики I категории МОУ «Средняя общеобразовательная школа 60 с углубленным изучением отдельных предметов г.Брянска»; в 1998 году окончила БГУ по специальности «учитель математики и физики», стаж работы – 8 лет, в данный момент работаю в профильном классе ( в 2003 – 2005 уч.годах имела опыт работы в профильных классах).

ГЕОМЕТРИЯ ПЛАНИМЕТРИЯСТЕРЕОМЕТРИЯ ( это раздел геометрии, в котором изучаются свойства фигур на плоскости) ( это раздел геометрии, в котором изучаются свойства фигур в пространстве) Простейшие фигуры. Точки, прямые А В С D a b Точки, прямые и плоскости

АКСИОМЫ планиметриястереометрия 1. Каждой прямой принадлежат по крайней мере две точки 2. Имеются по крайней мере три точки, не лежащие на одной прямой 3. Через любые две точки проходит прямая, и притом только одна. Характеризуют взаимное расположение точек и прямых Основное понятие геометрии «лежать между» 4. Из трех точек прямой одна и только одна лежит между двумя другими. А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

АКСИОМЫ планиметриястереометрия 1. Каждой прямой принадлежат по крайней мере две точки 2. Имеются по крайней мере три точки, не лежащие на одной прямой 3. Через любые две точки проходит прямая, и притом только одна. Характеризуют взаимное расположение точек и прямых Основное понятие геометрии «лежать между» 4. Из трех точек прямой одна и только одна лежит между двумя другими. А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Аксиомы стереометрии описывают: А1.А2. А3. А В С Способ задания плоскости. А В Взаимное расположение прямой и плоскости Взаимное расположение плоскостей

Взаимное расположение прямой и плоскости. Прямая лежит в плоскости. Прямая пересекает плоскость Прямая не пересекает плоскость. Множество общих точек Единственная общая точка Нет общих точек а а М а а а М а

Аксиомы стереометрии описывают: А1.А2. А3. А В С Способ задания плоскости. А В Взаимное расположение прямой и плоскости Взаимное расположение плоскостей

Способы задания плоскости Плоскость можно провести через три точки Можно провести через прямую и не лежащую на ней точку Аксиома 1Теорема 1 Теорема 2 Можно провести через две пересекающиес я прямые

Пользуясь данным рисунком, назовите: а) четыре точки, лежащие в плоскости SAB, в плоскости АВС; б) плоскость, в которой лежит прямая MN, прямая КМ; в) прямую, по которой пересекаются плоскости ASC и SBC, плоскости SAC и CAB. К А В М S N C

Пользуясь данным рисунком, назовите: а) две плоскости, содержащие прямую DE, прямую EF б) прямую, по которой пересекаются плоскости AEF и SBC; плоскости BDE и SAC ; в) две плоскости, которые пересекает прямая SB; прямая AC. А В С S D F E

Пользуясь данным рисунком, назовите: а) три плоскости, содержащие прямую В 1 С; прямую АВ 1; б) прямую, по которой пересекаются плоскости B 1 CD и AA 1 D 1 ; плоскости ADC 1 и A 1 B 1 B ; в) плоскость, не пересекающуюся с прямой CD 1 ; с прямой BC 1 A1A1 B1B1 D1D1 C1C1 A B C D

A1A1 B1B1 D1D1 C1C1 A B C DN M