« Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство » Герман Вейль.

Презентация:



Advertisements
Похожие презентации
Симметрия – в переводе с греческого соразмерность (однородность, пропорциональность, гармония) Математически строгое представление о симметрии сформировалось.
Advertisements

Точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О – центр симметрии. Точка О считается симметричной.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Правильные многогранники. СИММЕТРИЯ В ПРОСТРАНСТВЕ Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту.
Трёхгранные и многогранные углы: Трёхгранным углом называется фигура образованная тремя плоскостями, ограни- ченными тремя лучами, исходящими из одной.
П РАВИЛЬНЫЕ М НОГОГРАННИКИ. ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом.
МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
Правильные многогранники. План изучения темы 1. Симметрия в пространстве, виды симметрии 2. Примеры симметрии в окружающем нас мире 3. Правильный многогранник,
Симметрия относительно точки Симметрия относительно прямой А А 1 А 1 А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии),
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Определение: многогранник называется правильным, если все его грани правильные многоугольники и, кроме того, в каждой вершине сходится одинаковое число.
Симметрия в пространстве. Понятие правильного многогранника. Урок геометрии в 10 классе.
Правильные многогранники Выполнил Батурин Евгений.
Понятие правильного многогранника. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона ( до н. э.) "Тимаус".
Правильные выпуклые многогранники Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник.
ПРЕДУПРЕЖДЕНИЕ Данная программа предназначена для частного просмотра. За несанкционированное изготовление копий, коммерческий прокат, трансляцию по кабельным.
«Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Герман Вейль А А1А1 О Точки А и.
Транксрипт:

« Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство » Герман Вейль.

А1 О А Рис.1 Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1 (рис.1 ).Точка О считается симметричной самой себе.

А1 а О А Рис.2 Точки А и А1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна к этому отрезку (рис.2). Каждая точка прямой а считается симметричной самой себе.

α АО А1 Рис.3 Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку (рис.3). Каждая точка плоскости α считается симметричной самой себе.

Понятие центра, оси и плоскости симметрии фигуры. Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

Симметрия в природе Зеркальная (билатеральная) Лучевая (радиальная) ПоворотнаяВинтоваяГоризонтальная

Зеркальная симметрия

Лучевая симметрия

Поворотная симметрия

Винтовая симметрия

Горизонтальная симметрия

Симметрия в искусстве: архитектуре, скульптуре, живописи. Церковь Покрова Богородицы на Нерли.

Симметрия в искусстве: архитектуре, скульптуре, живописи. Кижи. Слева церковь Преображения г.

Симметрия в искусстве: архитектуре, скульптуре, живописи. Евхаристия. Мозаика апсиды собора Св. Софии в Киеве – 1046.

Симметрия в искусстве: архитектуре, скульптуре, живописи. С. Дали. Тайная вечеря.

Симметрия в искусстве: архитектуре, скульптуре, живописи. Дюрер. Меланхолия. Фрагмент гравюры на меди г.

Правильные многогранники. Выпуклый многогранник называется правильным, если все его грани - равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240°

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300°

Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°.

Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней: «эдра» - грань «тетра» - 4 «гекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12