Алгебра 8 класс.
Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения. Квадратные уравнения в Древнем Вавилоне.
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
Франсуа Виет
Теорема Виета. Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 + x 2 = -p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).
Х 2 – 14Х + 24 = 0 D=b 2 – 4ac = 196 – 96 = 100 X 1 = 2, X 2 = 12 X 1 + X 2 = 14, X 1 X 2 = 24 Не верите? Проверьте!
Х 2 + 3Х – 10 = 0 Х 1 ·Х 2 = – 10, значит корни имеют разные знаки Х 1 + Х 2 = – 3, значит больший по модулю корень - отрицательный Подбором находим корни: Х 1 = – 5, Х 2 = 2 Угадываем корни
х 2 – 7х + 12 = 0х = 3, х = 4х х + 32 = 0 х = - 16, х = -2х 2 – 5х – 14 = 0х = -2, х = 7х 2 + 5х + 6 = 0 х = -3, х = -2 х 2 – 8х + 12 = 0х = 2, х = 6 х 2 + 5х + 4 = 0 х = -4, х = -1х 2 – 5х – 6 = 0х = -1, х = 6 Реши устно уравнения:
Определение квадратного уравнения. Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b, c - некоторые числа, причем a 0.. Алгоритм решения квадратного уравнения: Найти число, называемое дискриминантом квадратного уравнения и равное D=b 2 -4ac. - если D0, то данное квадратное уравнение имеет два корня,которые равны
Решение примера. Ответ:
Например решаю квадратное уравнениеуравнение. 3Х 2 –18Х+24=0 D 1 =К 2 -ас= =72=9>0 Х 1 = Х 2 =