МОУ Матвеево-Курганская О(с)ОШ. Выполнила ученица 11 класса Кочубей Анастасия.

Презентация:



Advertisements
Похожие презентации
Девиз урока: «Знания только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью» (Л.Н.Толстой)
Advertisements

У древнегреческого ученого Диофанта в зачаточной форме есть действия над степенями одного и того же основания; французской ученый Оресм (XIV в.) вводит.
ЛогарифмыЛогарифмы Учитель математики школы 284 Сергелийского района г.Ташкента Учитель математики школы 284 Сергелийского района г.Ташкента Тастанова.
Тема: Логарифмические уравнения 1 занятие элективного курса(10 класс) Учитель математики 1 квалификационной категории Котловская Ирина Юрьевна МОУ СОШ.
«Определение логарифма. Основное логарифмическое тождество» Автор: Ковалева М.П. учитель математики ГОУ СОШ 658 Санкт – Петербург 2011.
5 23 Определение логарифма Логарифмом положительного числа b по основанию a называется показатель степени, в которую нужно возвести основание а, чтобы.
АВТОР: Землянникова С.В.. Из истории открытия логарифмов Основная идея введения логарифмов основывается на формуле а т а п = а т+п (1) что умножение можно.
11 класс На уроке: Дайте определение логарифму. Вспомните основное логарифмическое тождество. Вычислите: Дайте определение логарифму. Вспомните основное.
История логарифмов. Логарифм. Название введено Непером, происходит от греческих слов logoz и ariumoz - оно означает буквально числа отношений. Логарифмы.
10 класс На уроке На уроке обобщение и систематизация теоретического материала по данной теме; обобщение и систематизация теоретического материала по.
Цель урока 1.Изучить вид логарифмической функции, ее свойства; 2.Формирование умений построения графика данной функции; 3. Развитие самостоятельности в.
LOGO Логарифмы. Логарифмическая функция. 11 класс.
11 класс На уроке: Дайте определение логарифму. Вспомните основное логарифмическое тождество. Вычислите: Дайте определение логарифму. Вспомните основное.
Скажи мне, и я забуду. Покажи мне, и я запомню. Дай мне действовать самому, и я научусь. Конфуций.
11 класс Логарифмы. Логарифмическая функция (урок обобщения и систематизации знаний)
Презентация на тему: история создания логарифмической линейки МОУ СОШ46 г. Екатеринбург Хабарова Ксения 8В класс.
1 определите тему урока, решив уравнения 2 х = ; 3 х = ; 5 х = 1/125; 2 х = 1/4; 2 х = 4; 3 х = 81; 7 х = 1/7; 3 х = 1/81 выход.
Пик знаний По теме: «Показательная и логарифмическая функции»
Логарифмы история. Причина открытия: В 16 веке резко вырос объем работы, связанный с проведением приближенных вычислений. В частности при решении задач.
Алгебра
Транксрипт:

МОУ Матвеево-Курганская О(с)ОШ. Выполнила ученица 11 класса Кочубей Анастасия

Непер, Нейпир (Napier) Джон (1550, Мерчистон-Касл, близ Эдинбурга, , там же), шотландский математик, изобретатель логарифмов.

Первый изобретатель логарифмов шотландский барон Джон Непер ( ) получил образование на родине в Эдинбурге. Затем после путешествия по Германии, Франции и Испании, в возрасте двадцати одного года, он навсегда поселился в семейном поместье близ Эдинбурга. Непер занялся главным образом богословием и математикой, которую изучал по сочинениям Евклида, Архимеда, Коперника.

К открытию логарифмов Непер пришел не позднее 1594 года, но лишь двадцать лет спустя опубликовал свое «Описание удивительной таблицы логарифмов» (1614).

В предисловии к книге «Рабдология» Непер так говорил о своих побуждениях : «Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики»

На всем протяжении XVI века быстро возрастало количество приближенных вычислений, прежде всего в астрономии. Исследование планетных движений требовало колоссальных расчетов. Астрономы просто могли утонуть в невыполнимых расчетах. Основную трудность представляли умножение и деление многозначных чисел, особенно же тригонометрических величин.

Иногда для приведения умножения к более легкому сложению и вычитанию пользовались таблицами синусов и косинусов. Была также составлена таблица квадратов до , с помощью которой умножение можно было производить по определенному правилу. Однако эти приемы не давали удовлетворительного решения вопроса. Его принесли с собой таблицы логарифмов.

В Описании удивительной таблицы логарифмов (1614 г.) он опубликовал первую таблицу логарифмов (ему же принадлежит и сам термин «логарифм»), но не указал, каким способом она вычислена. Объяснение было дано в другом его сочинении, вышедшем в 1619, уже после смерти Непера. Таблицы логарифмов нашли немедленное применение. В 1617 Непер опубликовал еще одну свою работу, Рабдологию (Rabdologia «счет на палочках»), в которой изложил способ перемножения чисел с помощью особых брусков, получивших впоследствии название «костей Непера». Непер участвовал также в разработке различного рода боевых устройств (зажигательных стекол, артиллерийских орудий и т.д.).

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера. В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617 г.). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание появилось только в 1857 году в Берлине (таблицы Бремивера).

Практическое значение вычисленных таблиц было очень велико. Но открытие логарифмов имело также глубочайшее теоретическое значение. Оно вызвало к жизни исследования, о которых не могли и мечтать первые изобретатели. Открытие Непера, в частности, открыло путь в область новых трансцендентных функций и сообщило мощные стимулы в развитии анализа.

Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив их вычисления. В честь Джона Непера названы: кратер на Луне; астероид 7096 Непер (1992 год); логарифмическая безразмерная единица, измеряющая отношение двух величин; университет в Эдинбурге (Edinburgh Napier University).

Спасибо за внимание!