Стереометрия Введение (шесть уроков) по учебнику для 10-11 классов средней школы Авторы Л. С. Атанасян, В. Ф. Бутузов и др.

Презентация:



Advertisements
Похожие презентации
Стереометрия. Предмет и аксиомы стереометрии. СТЕРЕОМЕТРИЯ – это раздел геометрии, в котором изучаются свойства фигур в пространстве. Слово «стереометрия»
Advertisements

10 класс МСОШ1 Шахвалеева С.В.. Скажи мне – и я забуду. Покажи мне – и я запомню. Вовлеки меня – и я научусь. Древняя китайская пословица.
Предмет стереометрии. Аксиомы стереометрии. Геометрия Планиметрия (изучает свойства геометрических фигур на плоскости) Стереометрия (изучает свойства.
Основные понятия и аксиомы стереометрии
Основные понятия Стереометрия, или геометрия в пространстве, – это раздел геометрии, изучающий положение, форму, размеры и свойства различных пространственных.
Творческий проект выполнил: ученик 10 класса МОУ СОШ 22 г.Твери Бербеков Данила "Основные понятия и аксиомы стереометрии. Параллельность прямых и плоскостей"
ГЕОМЕТРИЯ Планиметрия Стереометрия (раздел геометрии, (раздел геометрии. в котором изучаются свойства фигур свойства фигур в на плоскости) пространстве)
Слайды по геометрии для 10 класса Учитель:Ледовская О.М.
Тема урока: Следствия аксиом стереометрии Цели урока: изучить теорему о плоскости, проведенной через прямую и точку вне ее; изучить теорему о плоскости,
Стереометрия ТЕМА: 2.1 АКСИОМЫ СТЕРЕОМЕТРИИ. НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ АК ВГУЭС Преподаватель БОЙКО ВЕРА ИВАНОВНА.
Геометрия 10 класс Тема урока: «Задачи на построение сечений тетраэдра и параллелепипеда» учитель Белоусова Е.Н.
Понятие Возникновение Фалес Евклид Планиметрия Стереометрия Основные фигуры Геометрия в жизни Значение Кроссворд.
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
АКСИОМЫ СТЕРЕОМЕТРИИ Через любые две точки пространства проходит единственная прямая Через любые три точки пространства, не принадлежащие одной прямой,
Аксиомы стереометрии. Некоторые следствия из аксиом
Аксиомы стереометрии Урок-лекция в 10-м классе Учебник геометрии для классов Автор Л.С. Атанасян Урок подготовила Грошева Н.В.
- Что такое геометрия? Геометрия – наука о свойствах геометрических фигур «Геометрия» - (греч.) – «землемерие» - Что такое планиметрия? Планиметрия –
СТЕРЕОМЕТРИЯ - РАЗДЕЛ ГЕОМЕТРИИ, В КОТОРОМ ИЗУЧАЮТСЯ СВОЙСТВА ФИГУР В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ФИГУРЫ В ПРОСТРАНСТВЕ – ТОЧКА ПРЯМАЯ ПЛОСКОСТЬ А а ГЕОМЕТРИЧЕСКИЕ.
Курсовая работа слушателя курсов « Информационно - коммуникационное сопровождение обучения математике » Савицкой Галины Ивановны Преподавателя ГБОУ НПО.
Тема урока: «Аксиомы стереометрии и их следствия. Решение задач»
Транксрипт:

Стереометрия Введение (шесть уроков) по учебнику для классов средней школы Авторы Л. С. Атанасян, В. Ф. Бутузов и др.

Поурочное планирование 1.Предмет и аксиомы стереометрии. 2.Следствия из аксиом. 3.Решение задач на построение. 4.Решение задач на построение 5.Решение задач на построение. 6.Практическая работа.

Предмет и аксиомы стереометрии. СТЕРЕОМЕТРИЯ – это раздел геометрии, в котором изучаются свойства фигур в пространстве. Слово «стереометрия» происходит от греческих слов «стереос» - объёмный, пространственный и «метрео» - измерять. Первый дошедший до нас учебник – руководство по математике под названием «Начала», созданное древнегреческим ученым Евклидом в III в. до н. э. В течение длительного времени геометрию изучали по этой книге.

Неопределяемые понятия и отношения Точка есть то, что не имеет частей. Прямая есть длина без ширины. Плоскость есть то, что имеет только длину и ширину. Точка Прямая Поверхность Принадлежность Между Конгруэнтность Формулировки Евклида: Современная концепция :

Простейшие геометрические тела. Геометрическое тело – это предмет, от которого отняты все его свойства, кроме пространственных.

Геометрические фигуры Геометрические тела, как и другие геометрические фигуры, являются воображаемыми объектами. Изучая свойства геометрических пространственных фигур мы получаем представление о геометрических свойствах реальных предметов.

Условные изображения пространственных фигур. Условное изображение пространственной фигуры – это её проекция на плоскость. Обычно выбирают то изображение, которое создаёт правильное представление о форме фигуры.

Условные обозначения Точки - прописными латинскими буквами (A, B, C, D, E, F, G, H,...) Прямые – строчными латинскими буквами (a, b, c, d, e, f, g, h,...) Плоскости – строчными греческими буквами (

Греческий алфавит альфа бета гамма дельта эпсилон дзета каппа тэта ню кси омикрон пи ро сигма тау ипсилон фи хи пси омега – йота – каппа – мю - лямбда

Условные изображения и обозначения прямых, точек и плоскостей Точка А принадлежит плоскости Точка В не принадлежит плоскости Прямая с не лежит в плоскости Прямая k лежит в плоскости Прямая m пересекает плоскость в точке А Плоскости и пересекаются по прямой а

Что такое аксиома? АКСИОМА – это высказывание, истинность которого принимается без доказательства (аксиома - греческое слово, означающее «бесспорное положение»). Аксиомы были сформулированы Евклидом ( III в. До н. э.) в его знаменитом сочинении «Начала».

Вспомним известные вам аксиом планиметрии: Каждой прямой принадлежат по крайней мере две точки. Из трех точек прямой одна и только одна лежит между двумя другими. Через любые две точки можно провести прямую, и притом только одну. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Если две фигуры совмещаются наложением, то говорят, что они равны.

А1: Через любые три точки, не лежащие на одной прямой проходит плоскость, и притом только одна. ВОПРОСЫ: -всегда ли три точки лежат в одной плоскости? -всегда ли четыре точки лежат в одной плоскости? -всегда ли через три точки проходит плоскость, и притом только одна? -сколько плоскостей можно провести через две точки?

А2: Если две точки прямой лежат в плоскости, то все точки этой прямой лежат в плоскости. ВОПРОСЫ: верно ли утверждение: -если две точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости? -если три точки окружности лежат в в этой плоскости? -если прямая пересекает две стороны треугольника, то она лежит в плоскости данного треугольника?

А3: Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей ВОПРОСЫ: могут ли две плоскости иметь: -только одну общую точку? -только две общие точки? -только одну общую прямую? -могут ли две пересекающиеся плоскости иметь общую точку, не принадлежащую линии пересечения этих плоскостей?

Рассмотрим куб ABCDА1B1C1D1 г) назовите прямые, по которым пересекаются плоскости ABC и DD 1 C 1, BB 1 C 1 и AA 1 B 1, AA 1 D 1 и A 1 B 1 C 1 ; а) назовите точки, которые лежат в плоскости DCC 1, ABC, ADD 1 ; б) назовите плоскости, которым принадлежат точки М, К, P 1, R, S, N; в) назовите плоскости, в которых расположены прямые KP, С 1 D 1, RP, MK ; ВОПРОСЫ:

Рассмотрим куб ABCDА1B1C1D1 д) назовите прямые, по которым пересекаются плоскости ABC и KPN, RPK и DСС 1, BDC 1 ; е) назовите точки пересечения прямых DS и CC 1, AD и PC, MR и AD, KP и AD, DC1 и RP1; ж) назовите общие точки плоскостей CDD 1 и BCC 1, ABC и АА1D1, BDC и ABB1.BDС1 и RSP; ВОПРОСЫ:

Проверим выполнение задания. а) R DCC 1, P DCC 1, S DCC 1, К ABC, K 1 ABC, P ABC, P 1 ABC, M ADD 1, R ADD 1, K ADD1, P1 ADD1; б) M ABB 1, M ADD 1, K 1 ABC, K ABB 1, P 1 ABC, P 1 DCC1, R ADD 1, R DCC 1, S DCC 1, N A 1 B 1 C 1, N BCC 1 ; в) KP ABC, C 1 D 1 CDD 1, C 1 D 1 A 1 B 1 C 1, RP CDD 1, MK AA 1 B 1 ; г) ABC DD 1 C 1 =DC, BB 1 C 1 AA 1 B 1 =BB 1, AA 1 D 1 A 1 B 1 C 1 =A 1 D 1 ; д) ABC KPN = KP, RPK DCC 1 = RP, BDC 1 RSP = DC 1 ; е) DS CC 1 =C 1, AD PC=D, MR AD=P 1, KP AD=K 1, DC 1 RP 1 = ; ж) C,C 1 (CDD 1 BCC 1 ), A 1,D 1,K 1, P 1 (ABC AA 1 D 1 ), A,K,B (BDC ABB 1 ). ДОМАШНЕЕ ЗАДАНИЕ: устно п. 1-2, письменно 1 (перечертить чертеж и ответ записать с помощью символики), 11.