Тема 5 Дискретные случайные величины. Закон распределения. Виды дискретных распределений План: 1. Понятие случайной величины и ее виды. 2. Закон распределения.

Презентация:



Advertisements
Похожие презентации
Теория вероятностей и математическая статистика Занятие 4. Дискретные и непрерывные случайные величины. Функция распределения. Плотность распределения.
Advertisements

1 Оглавление Способы задания случайных величин Числовые характеристики Основные дискретные распределения Основные непрерывные распределения Предельные.
Повторение испытаний Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то.
Тема 3. Законы распределения случайных величин. 1. Повторение опытов n независимых испытаний n независимых испытаний P(A)=p P( )=1-p=q P(A)=p P( )=1-p=q.
Тема 2 Операции над событиями. Условная вероятность План: 1.Операции над событиями. 2.Условная вероятность.. Если и, то Часто возникает вопрос: насколько.
Величина называется случайной, если она принимает различные результаты при проведении опыта, причем вероятность каждого исхода различна. Случайная величина.
ТТЕОРИЯ ВЕРОЯТНОСТЕЙ. Основные понятия Событием называется всякий факт, который может произойти или не произойти в результате опыта. События называются.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 15. Тема: Случайные величины и их числовые характеристики.
Модель - случайная величина. Случайная величина (СВ) - это величина, которая в результате опыта может принять то или иное значение, причем заранее не.
Случайные величины. Понятие о случайной величине Пусть имеется величина x, которая может принимать то или иное значение, причем это значение может быть.
Элементы теории вероятности и математической статистики Теория вероятностей возникла как наука из убеждения, что в основе массовых случайных событий лежат.
Случайная величина (СВ) 1. СВ – количественная характеристика случайного явления. Случайной называется такая величина, которая в результате опыта может.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 14. Тема: Повторение опытов. Формула Бернулли. Цель:
Литература Случайные величины и их законы распределения.
Литература Случайные величины и их законы распределения.
Законы распределения случайных величин. Опр. Законом распределения дискретной случайной величины называется всякое соотношение, устанавливающее связь.
Где q=1-p. Случайная величина Х называется распределенной по биномиальному закону с параметрами n,p >0, если Х принимает значения: 0,1,2,…n и вероятность.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 5. Тема: Непрерывность функции. Точки разрыва. Производные.
Математическая статистика Случайные величины. Случайной называется величина, которая в результате испытания может принять то или иное возможное значение,
Транксрипт:

Тема 5 Дискретные случайные величины. Закон распределения. Виды дискретных распределений План: 1. Понятие случайной величины и ее виды. 2. Закон распределения дискретной случайной величины. 3. Некоторые дискретные распределения.

В предыдущих темах неоднократно приводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5 и 6. Наперед определить число выпавших очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная; числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины. Случайной величиной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены. Пример 1. Число родившихся мальчиков среди ста новорожденных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2,..., 100. Пример 2. Расстояние, которое пролетит снаряд при выстреле из орудия, есть случайная величина. Возможные значения этой величины принадлежат некоторому промежутку Так как в результате испытаний происходят элементарные события, то можно связать понятия случайной величины и элементарных событий и дать другое определение случайной величины Случайной величиной называется функция определенная на пространстве элементарных событий

Пример 3. При подбрасывании двух монет число выпавших гербов Х есть случайная величина, которая может принимать значения 0, 1 и 2. Пространство элементарных событий состоит из следующих элементарных событий: Пример 3. При подбрасывании двух монет число выпавших гербов Х есть случайная величина, которая может принимать значения 0, 1 и 2. Пространство элементарных событий состоит из следующих элементарных событий: Тогда Х принимает следующие значения: Случайные величины обозначаются прописными латинскими буквами а их возможные значения соответствующими строчными буквами Например, если случайная величина Х имеет три возможных значения, то они обозначаются через

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным. В качестве примера таковой можно привести случайную величину из примера 1. Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Число возможных значений непрерывной случайной величины бесконечно. В качестве примера такой величины можно привести случайную величину из примера 2. Для задания дискретной случайной величины недостаточно перечислить все возможные ее значения, нужно еще указать их вероятности. С другой стороны, во многих задачах нет необходимости рассматривать случайные величины как функции от элементарного события, а достаточно знать лишь вероятности возможных значений случайной величины, т.е. закон распределения случайной величины.

Законом распределения вероятностей или просто законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать в виде таблицы, графика и формулы. Рассмотрим различные способы задания закона распределения вероятностей на примерах. При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая их вероятности. Сумма вероятностей во второй строке таблицы должна быть равна 1. В таблице 5.1 задан закон распределения дискретной случайной величины из примера 3. Т а б л и ц а 5.1

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки, а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. На рисунке 5.1 приведен многоугольник распределения случайной величины Х из примера 3. точки, а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. На рисунке 5.1 приведен многоугольник распределения случайной величины Х из примера 3. Теперь рассмотрим некоторые дискретные распределения, заданные посредством формул: биномиальное, геометрическое и Пуассона. Пусть производится n независимых испытаний, в каждом из которых вероятность наступления события А (успеха) постоянна и равна p (следовательно, вероятность непоявления (неудачи) равна q=1–p). Рассмотрим в качестве дискретной случайной величины Х число появлений события А в этих испытаниях. Возможные значения Х таковы: 0, 1, 2,..., n. Вероятности этих возможных значений находятся по формуле Бернулли (4.1): где k= 0, 1, 2,..., n. Рис. 5.1.

Биномиальным называют распределение вероятностей, определяемое формулой Бернулли. Закон назван «биномиальным» потому, что правую часть формулы Бернулли можно рассматривать как общий член разложения бинома Ньютона: Так как p + q = 1, то сумма вероятностей возможных значений случайной величины равна 1. Таким образом, биномиальный закон распределения имеет вид В качестве примера биномиального распределения можно привести распределение случайной величины из примера 3. Пусть производятся независимые испытания, в каждом из которых вероятность появления события А (успеха) равна р (0<p<1) и, следовательно, вероятность его непоявления (неудачи) равна q=1–p. Испытания продолжаются до первого успеха. Таким образом, если событие А появилось в k-м испытании, то в предшествующих k – 1 испытаниях оно не появлялось.

Если через Х обозначить дискретную случайную величину, равную числу испытаний до первого успеха, то ее возможными значениями будут натуральные числа 1, 2, 3,... Пусть в первых k – 1 испытаниях событие А не наступило, а в k-м испытании появилось. Вероятность этого «сложного события», по теореме 3.3 умножения вероятностей независимых событий, равна (5.1) Геометрическим называют распределение вероятностей, определяемое формулой (5.1), так как полагая в этой формуле k = 1, 2,..., получим геометрическую прогрессию с первым членом р и знаменателем q (0<q<1): Просуммировав бесконечно убывающую геометрическую прогрессию, легко убедиться, что сумма вероятностей возможных значений случайной величины равна 1: Таким образом, геометрический закон распределения имеет вид Т а б л и ц а 5.4

Вопросы для повторения и контроля: 1. Как определяется случайная величина в общем случае и на языке функций? 2. Что такое дискретная случайная величина? 3. Что такое непрерывная случайная величина? 4. Что вы знаете о законе распределения дискретной случайной величины? 5. Что вы знаете о биномиальном законе распределения? 6. Каковы особенности геометрического закона распределения? 7. В каких случаях используют распределение Пуассона?

Опорные слова: Случайная величина, дискретная случайная величина, непрерывная случайная величина, закон распределения дискретной случайной величины, многоугольник распределения, биномиальное распределение, геометрическое распределение, распределение Пуассона.