Где q=1-p. Случайная величина Х называется распределенной по биномиальному закону с параметрами n,p >0, если Х принимает значения: 0,1,2,…n и вероятность.

Презентация:



Advertisements
Похожие презентации
Величина называется случайной, если она принимает различные результаты при проведении опыта, причем вероятность каждого исхода различна. Случайная величина.
Advertisements

Тема 3. Законы распределения случайных величин. 1. Повторение опытов n независимых испытаний n независимых испытаний P(A)=p P( )=1-p=q P(A)=p P( )=1-p=q.
1.Случайные события. ВероятностьСлучайные события. Вероятность 2.Вычисление вероятностейВычисление вероятностей 3.Независимые события. Формула БернуллиНезависимые.
Тема 5 Дискретные случайные величины. Закон распределения. Виды дискретных распределений План: 1. Понятие случайной величины и ее виды. 2. Закон распределения.
1 Оглавление Способы задания случайных величин Числовые характеристики Основные дискретные распределения Основные непрерывные распределения Предельные.
Биномиальное распределение Обозначение : Область значений :, где m – целое Параметры : n – целое положительное число ( испытаний ), – параметр схемы Бернулли.
Повторение испытаний Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то.
Примеры Вырожденное распределение (Распределение константы) Распределение Бернулли (Распределение индикатора события)
Анализ случайных величин. Опр. Случайной называется величина, которая в результате опыта может принять то или иное возможное значение, неизвестное заранее,
Случайные величины. Понятие о случайной величине Пусть имеется величина x, которая может принимать то или иное значение, причем это значение может быть.
ШАЛАЕВ Ю.Н. доцент каф. ИПС, АВТФ ТЕОРИЯ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА И СЛУЧАНЙНЫЕ ПРОЦЕССЫ Лекции- 26 часов Практические занятия- 26 часов.
Законы распределения случайных величин. Опр. Законом распределения дискретной случайной величины называется всякое соотношение, устанавливающее связь.
Теория вероятностей и статистика 9 класс Глава 12. Числовые характеристики случайных величин.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 15. Тема: Случайные величины и их числовые характеристики.
НОРМАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ. ЗАКОН БОЛЬШИХ ЧИСЕЛ.
Математическая статистика Случайные величины. Случайной называется величина, которая в результате испытания может принять то или иное возможное значение,
Дисперсия - это мера рассеяния значений случайной величины около ее математического ожидания:
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 14. Тема: Повторение опытов. Формула Бернулли. Цель:
ТТЕОРИЯ ВЕРОЯТНОСТЕЙ. Основные понятия Событием называется всякий факт, который может произойти или не произойти в результате опыта. События называются.
Список литературы 1. Гнеденко б.В. Курс теории вероятностей. – М.: Физматгиз, Ивченко Г.И., Медведев Ю.И. Математическая статистика. 2-е изд.
Транксрипт:

где q=1-p. Случайная величина Х называется распределенной по биномиальному закону с параметрами n,p >0, если Х принимает значения: 0,1,2,…n и вероятность того, что случайная величина примет значение X=m находится по формуле Бернулли:

Случайную величину Х, распределенную по биномиальному закону, можно трактовать следующим образом: Рассмотрим событие А, которое происходит в опыте с вероятностью р и не происходит с вероятностью q=1-p. Производится серия из n опытов в одинаковых условиях и независимо друг от друга. Случайная величина Х - сколько раз событие А произошло в данной серии опытов.

Составить ряд распределения величины, распределенной по биномиальному закону с параметрами n=4, р=1/3.

Производится серия из n=4 опытов. Случайная величина Х - число опытов, в которых может произойти событие А, может принимать значения 0, 1, 2, 3, 4. Соответствующие вероятности находятся по формуле Бернулли при n=4, p=1/3, q=1-1/3=2/3. Вероятность того, что событие А не произойдет ни в одном опыте (m=0):

Вероятность того, что событие А произойдет в одном опыте (m=1): Аналогично находим вероятности того, что это событие произойдет в двух (m=2), в трех (m=3) и в четырех (m=4) опытах:

Можно убедиться, что суммарная вероятность действительно равна 1. Таким образом, ряд распределения случайной величины Х будет выглядеть так: ХmХmХmХm01234 PmPmPmPm16/81 32/81 24/818/811/81

Найдем математическое ожидание случайной величины, распределенной по биномиальному закону. Х - число опытов в серии из n, в которых произошло событие А. Введем для каждого i=1,2…n случайную величину Z i. Пусть Z i принимает всего два значения: 1 - если событие А произойдет в i-ом опыте и 0 - если событие А не произойдет в i-ом опыте. Тогда событие Х выразится через сумму событий Z i : Х= Z 1 +Z 2 +…+Zn

Тогда математическое ожидание случайной величины Х: M[X]=M[Z 1 ]+M[Z 2 ]+…+M[Z n ] Найдем математическое ожидание Z i Ряд распределения Z i имеет вид: Тогда M[Z i ]=p и M[X]=np. ZiZiZiZi01 PiPiPiPiqp

Найдем дисперсию случайной величины Z i Так как случайные величины Z i независимы, то Таким образом, для случайной величины, распределенной по биномиальному закону,