Метод интервалов Подготовила: учитель математики МОУ сош 30 имени А.И.Колдунова Кутоманова Е.М. 2010-2011 учебный год.

Презентация:



Advertisements
Похожие презентации
Метод интервалов Подготовила: учитель математики МОУ сош 30 имени А.И.Колдунова Кутоманова Е.М учебный год.
Advertisements

Методом интервалов можно решать неравенства вида: f(х)>0, f(х) 0 f(х)
Непрерывность функции Метод интервалов. Функция y= f (x) непрерывна на интервале Х, если она непрерывна во всех точках интервала Х Функция у = f (x) непрерывна.
Урок алгебры в 9 классе Тема : « Решение неравенств методом интервалов » методом интервалов » Колокольцева А.В. Учитель математики БОУСОШ 1 Динского района.
МЕТОД ИНТЕРВАЛОВ
Рациональные неравенства.. Создаём интервалы, проставляем знаки, выбираем ответ: x Первый знак: Смена знака: Выбор ответа: Все.
y = f(x) f(x) > 0 f(x) < 0 x1x1 x2x2 x3x3 x4x4 x5x5 f(x) > 0, x [-16; -10); (-6; 3); (13; 16). f(x) < 0, x (-10; -6); (3; 13); (16;
Применения непрерывности 1. Непрерывность функции. Если f (x) f (x 0 ) при x x 0, то функцию называют непрерывной в точке x 0. Если функция непрерывна.
Применение производной для исследования функции на монотонность и экстремумы.
Далее » Рассмотрим решение квадратных неравенств на конкретном примере. Решим неравенство x 2 -5x-50.
Решение рациональных неравенств 9 класс Подготовила: учитель математики МОУ сош 30 имени А.И.Колдунова Кутоманова Е.М учебный год.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н. Преподаватель: Французова Г.Н.
Метод интервалов Демонстрационный материал 9 класс.
Далее » Рассмотрим решение квадратных неравенств на конкретном примере. Решим неравенство x 2 -5x ) Найдем нули функции (то есть абсциссы точек.
Решение некоторых неравенств. МБОУ г. Мурманска гимназия 3 Шахова Татьяна Александровна.
Материал к уроку. В мире не происходит ничего, в чем бы не был виден смысл какого-нибудь максимума или минимума. Л.Эйлер.
Свойства производной. Построение графиков функций. (Повторение материала 10 класса).
Решение рациональных неравенств методом интервалов Цель: решая неравенства методом интервалов, рассмотреть особые случаи - корни четной кратности и точки.
Амиргамзаев Ю.Г., учитель математики МКОУ «ЩаринскаяСОШ » с.Щара Лакский район РД.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Транксрипт:

Метод интервалов Подготовила: учитель математики МОУ сош 30 имени А.И.Колдунова Кутоманова Е.М учебный год

Рассмотрим функцию f(х)=(х+3)(х-1)(х-2). D(f)- любое число, нули функции- числа -3; 1; 2. Нули функции разбивают всю область определения на промежутки: (-;-3),(-3;1),(1;2), (2;). Выясним, какой знак имеет функция на каждом из указанных промежутков: f(-4)=-1·(-5)(-6)=-30<0; f(0)=3·(-1)·(-2)=6>0; f(1,5)=4,5·0,5·(-0,5)<0; f(3)=6·2·1>0; х f - -++

ТЕОРЕМА :Если функция f непрерывна на интервале (a;b) и не обращается в 0 на этом интервале, то f сохраняет на нём постоянный знак. Необходимым условием смены знака в точке С является : f (c)=0 Однако, это не является достаточным условием : функция f может и не менять своего знака при переходе через точку С

Методом интервалов можно решать неравенства вида: f(х)>0, f(х) 0 f(х)<0, f(х) 0

1. Решим неравенство: (х+4)(х-3) >0 f(х)= (х+4)(х-3), D(f)- любое число, -4 и 3- нули функции, которые разбивают всю область определения на промежутки: (-;-4), (-4;3), (3;). Определим знак функции на каждом промежутке: f(-5)=-1·(-8)=8>0; f(0)=4·(-3)=-12<0; f(4)=8·1=8>0. х f Ответ (-;-4)U (3; ).

2. Решим неравенство: (х+5)(х+1)(х-3) <0. f(х)=(х+5)(х+1)(х-3), D(f)-любое число, -5;-1;3- нули функции, которые разбивают всю область определения на промежутки: (-;-5), (-5;-1), (-1;3).(3;). Определим знак функции на каждом промежутке: f(-6)=-1·(-5)·(-9)=-45<0, f(-2)=3·(-1)·(-5)=15>0, f(0)=5·1·(-3)=-15<0, f(4)=9·5·6=270>0. х f Ответ (-;-5)U (-1;3).

3. Решим неравенство D(f)- любое число, кроме -5, 3- нуль функции. х f

4. Решим неравенство D(f)- любое число, кроме -5, -13-нуль функции. х f