Правильные многогранники Содержание Понятие Попробуйте назвать Разновидности правильных многогранников Немного истории Об авторе.

Презентация:



Advertisements
Похожие презентации
Правильные многогранники Содержание Понятие Разновидности правильных многогранников Немного истории Немного истории Об авторе.
Advertisements

Правильные многогранники Работа учеников 10 б Иванова Николая и Митченко Егора.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Правильные многогранники Выполнила ученица 10-го класса Бурданова Мария.
Выполнила Абрамова Виктория Александровна Определение Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр Таблица Историческая справка Это интересно.
С глубокой древности человеку известны пять удивительных многогранников.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Удивительный мир правильных многогранников Авторы: Болотова Анна и Зверева Анна, учащиеся 10 «А» класса МОУ «СОШ 3 с углублённым изучением отдельных предметов»
Понятие правильного многогранника. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона ( до н. э.) "Тимаус".
Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины выходит одинаковое число ребер.
Презентация СидороваАлександра Алексеевича студента группы Т1-07.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Закирянова Зульфия Назиповна, МВ(С)ОШ 3, г.Нижневартовск.
Муниципальное общеобразовательное учреждение Морткинская средняя общеобразовательная школа код участника:999 Геометрия 11 класс Презентация к разделу:
Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
Многогранники Правильные. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины.
МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Правильные многогранники. Элементы симметрии правильных многогранников. Урок геометрии в 10 классе Учитель: Мещерякова Елена Викторовна.
Урок геометрии в 11 классе Презентация Пунтус Светланы Анатольевны Сш17 город Владивосток.
Транксрипт:

Правильные многогранники

Содержание Понятие Попробуйте назвать Разновидности правильных многогранников Немного истории Об авторе

выпуклый многогранник называется правильным, если все его грани равные правильные многоугольники и, кроме того, в каждой вершине сходится одинаковое число ребер. Определение:

Попробуйте назвать многогранники: тетраэдргексаэдр октаэдр додекаэдрикосаэдр К содержанию

Тетраэдр Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер. К содержанию

Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем тетраэдра: к содержанию

Октаэдр Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер. к содержанию

Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем октаэдра: к содержанию

Гексаэдр (Куб) Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер. К содержанию

Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности куба: Объем куба: S =6a 2 V =a 3 К содержанию

Додекаэдр Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер. К содержанию

Элементы симметрии: Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем додекаэдра: К содержанию

Икосаэдр Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер. К содержанию

Элементы симметрии: Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии. Радиус описанной сферы: Радиус вписанной сферы: Площадь поверхности: Объем икосаэдра: К содержанию

Свойства этих многогранников изу- чали ученые и священники; их мо- дели можно увидеть в работах ар- хитекторов и ювелиров, им припи- сывались различные магические и целебные свойства. Немного истории К содержанию

Великий древнегреческий ученый Платон, живший в IV-V вв. до н. э., считал, что эти тела олицетворяют сущность природы. Человечеству были известны четыре сущности: огонь, вода, земля и воздух. По мнению Платона, их атомы имели вид правильных многогранников: огня тетраэдр, земли гексаэдр, воздуха - октаэдр, воды икосаэдр к содержанию

Но оставался еще додекаэдр отсутствует полное соответствие. Платон предположил, что существует еще одна сущность- мировой эфир, атомы которого имеют вид додекаэдра. Платон и его ученики в своих работах уделяли большое внимание правильным многогранникам, и поэтому их ещё называют "платоновыми телами". К содержанию

Использовались материалы: Использовались программы: Microsoft Word Microsoft Power Point Internet Explorer К содержанию

Об авторе Создатель презентации: учитель математики Симоненко О.М. с. Малая Кема Тернейского района Приморского края Куратор: Боровкова Т.И. К содержанию