1 Правильные многогранники Работу выполнил: Ученик 10 класса Мухаметшин Камиль.

Презентация:



Advertisements
Похожие презентации
1 Правильные многогранники и их построение. Пермякова Н.Г.
Advertisements

Выполнила ученица 10 класса Мялинцева Любовь. 1. Понятие многогранника 2. Определение правильного многогранника 3. Сколько существует правильных многогранников.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
МОУ «Еланская средняя общеобразовательная школа» Выполнила: учащаяся 11-го класса, Фащевская Анастасия. Руководитель: Кузнецова Т. Н. учитель математики.
Правильные многогранники. Правильные многогранники. Работа учителя математики Вотиновой Татьяны Михайловны МОУ «Рассолёнковская СОШ».
М НОГОГРАННИКИ. О ПРЕДЕЛЕНИЕ МНОГОГРАННИКА : Многогранник – это поверхность составленная из многоугольников, ограничивающая некоторое геометрическое тело.
Понятие правильного многогранника. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона ( до н. э.) "Тимаус".
Многогранники Правильные. Многогранник называется правильным, если все его грани – равные между собой правильные многоугольники, из каждой его вершины.
Правильные многогранники. Элементы симметрии правильных многогранников. Урок геометрии в 10 классе Учитель: Мещерякова Елена Викторовна.
Правильные многогранники.
«Правильные многогранники» Работа учениц 10 класса «Б» Латышевой Насти Бычковой Сони.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Презентация на тему «Правильные многогранники или тела Платона» Выполнил Ученик 10 класса «Т1» Лицея 35 Носенко Игорь.
Правильные выпуклые многогранники Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник.
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Правильные многогранники Содержание Понятие Разновидности правильных многогранников Немного истории Немного истории Об авторе.
Правильные многогранники Человек проявляет интерес к правильным многоугольникам и многогранникам на протяжении всей своей сознательной деятельности –
Правильные многогранники Подготовила ученица 10-А класса МБОУ «Гимназия 1 им. К.Д.Ушинского» Дорошенко Александра.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Правильные многогранники Выполнила ученица 10-го класса Бурданова Мария.
Транксрипт:

1 Правильные многогранники Работу выполнил: Ученик 10 класса Мухаметшин Камиль

2 Существует пять типов правильных многогранников тетраэдр октаэдр икосаэдр гексаэдр додекаэдр

3 Правильным называется многогранник, у которого все грани являются правильными многоугольниками, и все многогранные углы при вершинах равны. правильными многоугольниками Приведён пример правильного многогранника (икосаэдр), его гранями являются правильные (равносторонние) треугольники.

4 В каждой вершине многогранника должно сходиться столько правильных n – угольников, чтобы сумма их углов была меньше Т.е должна выполняться формула βk < ( β-градусная мера угла многоугольника, являющегося гранью многогранника, k – число многоугольников, сходящихся в одной вершине многогранника.) названиеβk Сумма плоских углов тетраэдр октаэдр икосаэдр гексаэдр додекаэдр

5 Правильный многогранник, у которого грани правильные треугольники и в каждой вершине сходится по три ребра и по три грани. У тетраэдра: 4 грани, четыре вершины и 6 ребер. ТЕТРАЭДР

6 ОКТАЭДР Правильный многогранник, у которого грани- правильные треугольники и в каждой вершине сходится по четыре ребра и по четыре грани. У октаэдра: 8 граней, 6 вершин и 12 ребер назад

7 ИКОСОЭДР Правильный многогранник, у которого грани - правильные треугольники и в вершине сходится по пять рёбер и граней. У икосаэдра:20 граней, 12 вершин и 30 ребер назад

8 КУБ -правильный многогранник, у которого грани – квадраты и в каждой вершине сходится по три ребра и три грани. У него: 6 граней, 8 вершин и 12 ребер. назад

9 Додекаэдр Правильный многогранник, у которого грани правильные пятиугольники и в каждой вершине сходится по три ребра и три грани. У додекаэдра:12 граней, 20 вершин и 30 ребер. назад

10 Элементы симметрии правильных многогранников тетраэдроктаэдр икосаэдргексаэдр додекаэдр Центры симметрии Оси симметрии Плоскости симметрии 69159

11

12 Немного истории Все типы правильных многогранников были известны в Древней Греции – именно им посвящена завершающая, XIII книга «Начал» Евклида.Евклида.

13 Правильные многогранники называют также «платоновыми телами» - они занимали видное место в идеалистической картине мира древнегреческого философа Платона.Платона. Додекаэдр символизировал всё мироздание, почитался главнейшим. Уже по латыни в средние века его стали называть «пятая сущность» или guinta essentia, «квинта эссенция», отсюда происходит вполне современное слово «квинтэссенция», означающее всё самое главное, основное, истинную сущность чего-либо. Платоновы тела тетраэдр огонь икосаэдр вода куб земля октаэдр воздух додекаэдр «всё сущее»

14 Платон Платон (Platon) (род ум. 347 гг.до н.э.) - греческий философ. Родился в Афинах. Настоящее имя Платона было Аристокл. Прозвище Платон (Широкоплечий) было ему дано в молодости за мощное телосложение. Происходил из знатного рода и получил прекрасное образование. Возможно, слушал лекции гераклита Кратила, знал популярные в Афинах сочинения Анаксагора, был слушателем Протагора и других софистов. В 407 г. стал учеником Сократа, что определило всю его жизнь и творчество. Согласно легенде, после первого же разговора с ним Платон сжег свою трагическую тетралогию, подготовленную для ближайших Дионисий. Целых восемь лет он не отходил от любимого учителя, образ которого он с таким пиететом рисовал впоследствии в своих диалогах. В 399 г. Сократ, приговоренный к смерти, закончил жизнь в афинском узилище. Платон, присутствовавший на процессе, не был с Сократом в его последние минуты. Возможно, опасаясь за собственную жизнь, он покинул Афины и с несколькими друзьями уехал в Мегару. Оттуда он поехал в Египет и Кирену (где встретился с Аристиппом и математиком Феодором), а затем в Южную Италию колыбель элеатизма (Парменид, Зенон Элейский) и пифагорейства (Пифагор).

15 Олицетворение многогранников.

16 Тайна мировоззрения.

17 Выводы : Многогранник называется правильным, если: Он выпуклый; Все его грани равные правильные многоугольники; В каждой вершине сходится одно число граней; Все его двугранные углы равны.

18 Построение с помощью куба

19 С1 В1 А Построение правильного тетраэдра вписанного в куб Рассмотрим вершину куба А. В ней сходятся три грани куба, имеющие форму квадратов. В каждом из этих квадратов берем вершину противоположную А,- вершины куба В1, С1, Д. Точки А, В1,С1, Д- являются вершинами правильного тетраэдра. Д

20 Построение правильного тетраэдра

21 Построение икосаэдра, вписанного в куб Поместим на средних линиях граней куба по одному отрезку одинаковой длины с концами на равных расстояниях от ребер. Расположим отрезки и выберем их длину так, чтобы соединяя концы отрезка одной грани с концом отрезка другой грани получить равносторонний треугольник, причем из каждой вершины должны выходить пять ребер.

22 Описать около данного куба правильный октаэдр Через центры противоположных граней куба проведем прямые, которые пересекаются в точке О- центре куба- и являются взаимно перпендикулярными. На каждой из этих прямых по обе стороны от точки О отложим отрезки длиной 1,5 а, Где а- длина ребра куба. Концы этих отрезков являются вершинами правильного октаэдра. Далее последовательно соединяем эти вершины. O

23 Построение додекаэдра, описанного около куба На каждой грани куба строим « четырехскатную крышу», две грани которой- треугольники и две- трапеции. Такие треугольник и трапецию получим, если построим правильный пятиугольник, у которого диагональ равна ребру куба. Стороны этого пятиугольника будут равны ребрам додекаэдра, а построенные с помощью диагонали треугольник и трапеция окажутся фрагментами «четырехскатной крыши»