1. Укажите квадратичную функцию 1)у = 2х 2 + х – 1; 2) у 2 = х + 1; 3) у 2 = х 2 – 1; 4) у = -х – х 2 ; 5) у 2 = х 2 ;6) у = -х 2.
2. Дано: сопоставьте условия графику а) а > 0; D > 0; c 0; D = 0; c > 0; в) а 0; c = 0; д) а > 0; с = 0; D = 0.
3. Укажите нули функции 1)у = 2х – 3; 2) у = ; 3) у = ; 4) у = х 2 – 3х + 2.
Неравенства вида ах 2 +bх+с>0 ( 0, x 2 – 9 0, х 2 – 2х < 0, -х 2 > 0
План решения квадратных неравенств 1. Найти корни ах 2 +bх+с=0, 2. Построить эскиз графика у=ах 2 +bх+с 3. Определить промежутки
Схема решения неравенства ах 2 +bx+c>0 в зависимости от а и D ax 2 + bx + c > 0 (D = b 2 – 4ac)x (-; x 1 )x(-; x 0 )x ax 2 + bx + c > 0 (D = b 2 – 4ac), a>0 x (-; x 1 )U(x 2 ; +)x (-; x 0 ) U(x 0 ; +)x R a
Даны неравенства: а) ах 2 + bx + c > 0; б) ах 2 + bx + c < 0; Найти решения по графику
Определите знак коэффициента а, коэффициента с, дискриминанта D Какое квадратное неравенство ах 2 + bx + c имеет решением интервал : 1) x [1; 3];2) x R; 3) х (-; -4) (0; +); 4) решений нет.