Исследовательская работа по теме: «Квадратные уравнения в жизни»

Презентация:



Advertisements
Похожие презентации
Автор работы: ученик 8 класса Лапшин Виталий. ОБЪЕКТ ИССЛЕДОВАНИЯ: история математики ОБЪЕКТ ИССЛЕДОВАНИЯ: история математики ПРЕДМЕТ ИССЛЕДОВАНИЯ: появление.
Advertisements

Квадратные уравнения Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. 8 класс Презентация 1.
Квадратные уравнения Кв. уравнения в Древнем Вавилоне. Кв. уравнения в Древнем Вавилоне. Кв. уравнения в Индии. Кв. уравнения в Индии. Квадратные уравнения.
Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью.
Квадратное уравнение – это уравнение вида ax 2 +bx+c=0, где a,b,c - заданные числа, х - неизвестное, a = 0 Квадратные уравнения. X 2 +bx+c=0.
ГОУ «СОШ с. Тальменка» ученик 8 класса Мнеян Давид 2004 г. Работу выполнил: ту выполнил :
Нажмите кнопку «Решение показательных уравнений»
Цели урока: -закрепить знания учащихся, полученные при изучении темы; - познакомить с историей квадратных уравнений; - исследовать зависимость между коэффициентами.
Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением.
Алгебра 8 класс. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные.
1.Уравнение вида ax 2 +bx+c=0 называется … 2.Дискриминант находится по формуле D= … 3. Если D > 0, то квадратное уравнение имеет … 4. Если D =0, то уравнение.
Обобщающий урок по темеКвадратные уравнения и уравнения, приводимые к квадратным Обобщающий урок по темеКвадратные уравнения и уравнения, приводимые к.
Квадратичная функция. Подготовил ученик 8А класса Герлиц Андрей.
Формулы корней квадратного уравнения.. Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ёщё.
Алгебра 8 класс. Квадратные уравнения в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана.
Козак Татьяна Ивановна, учитель математики высшей категории Участники: учащиеся 8 класса.
Способы решения.. Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные.
Решение задач с помощью квадратных уравнений. Цели и задачи урока Научиться решению задач с помощью квадратных уравнений. Уметь хорошо решать квадратные.
Квадратные уравнения МОУ СОШ им. Н.И. Крылова с.Вишнёвое Учитель математики Александрова Людмила Борисовна.
ТЕМА КВАДРАТНЫЕ УРАВНЕНИЯ. Как люди научились решать квадратные уравнения?
Транксрипт:

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА ПО ТЕМЕ : « КВАДРАТНЫЕ УРАВНЕНИЯ В ЖИЗНИ » Выполнил : Ученик 8 А класса Лицея 144 Торопов Алексей Руководитель : Учитель математики Иванова Светлана Борисовна

План работы : Введение. Историческая справка Актуальность выбранной темы. Гипотеза Основная часть Мои исследования Вывод Использованная литература

Цель работы : Узнать больше о квадратных уравнениях Проанализировать, где в жизни применяются квадратные уравнения

Введение. Историческая справка Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Умение решать уравнения не только имеет теоретическое значение для познания естественных законов, но и служит практическим целям. х у

Важность умения решать квадратные уравнения в очередной раз доказывает то, что такие уравнения умели решать еще в древности. Но как это делалось, если в то время не существовала символическая алгебра ?

Актуальность выбранной темы. История возникновения и развития квадратных уравнений Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения решали еще в Индии. Древнеиндийский математик Баудхаяма. впервые использовал квадратные уравнения в форме ax 2 = c и ax 2 + bx = c и привел методы их решения.

Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. в « Книге абака » итальянским математиком Леонардом Фибоначчи.

Далее квадратные уравнения продолжают изучать и другие выдающиеся математики Штифель Кардано Франсуа Виет Рене Декарт Ньютон

Мы уже знаем, что решение квадратных уравнений находило применение в древности. Так как квадратные уравнения с тех времен активно развивались, можно сделать вывод, что их применение значительно увеличилось. Как же теперь применяются квадратные уравнения ?

Мои исследования Изучив множество источников я выяснил, что квадратное уравнение широко распространено. Оно применяется во многих расчетах, сооружениях, спорте, а также и вокруг нас. Рассмотрим и проверим некоторые применения квадратного уравнения

Сейчас ученые выяснили, что траекторию движения планет можно найти с помощью квадратного уравнения.

Взлет главная составляющая полета. Здесь берется расчет для маленького сопротивления и ускоренного взлета. Взлет самолета

Фонтан смотрится лучше, если капли воды достигают высоты, большей, чем высота статуи.

В данном виде спорта, крайне важны арифметические расчеты. При разбеге прыгуна в высоту для максимально четкого попадания на планку отталкивания и высокого полета, используют расчеты связанные с параболой.

Также подобные расчеты нужны в метании. Дальность полета объекта зависит от квадратного уравнения.

Квадратные уравнения получили большое значение и значительное применение в жизни.

С помощью исследования я выяснил, что квадратное уравнение имеет большое применение в жизни. Еще в древности человек использовал квадратное уравнение. А с тех пор применение квадратного уравнения только росло.

Вывод Проходя эту тему на уроке, мы мало задумываемся о практическом применении квадратных уравнений. Поэтому мы считаем, что квадратные уравнения нигде не используются, но как выяснилось это не так. Изучая эту тему, я узнал много интересных фактов о квадратных уравнениях, их истории, и об их применении.

Использованная литература - О. В. Зут Серия « Смотреть значит видеть » - Интернет источники, Википедия - А. А. Прокофьев « Математика » - И. Б. Кожухов « Математика » - А. М. Голова « Наука в действии »

Спасибо за внимание