Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемАнгелина Михайловская
1 Математика и искусство Автор: Скворцов Дмитрий Студент группы 2 ТЭМО АУ СПО «Чебоксарский техникум Транс СтройТех»
4 История математического изобразительного искусства Одной из частых тем математического искусства является использование многогранников, которые были изучены достаточно давно. Платон ( до н.е.) описал пять правильных многогранников, которые также иногда называются телами Платона. Однако открыты они были раньше Платона, и детали открытия правильных многогранников остаются загадкой. Платон соотносил эти тела с четырьмя элементами: огонь - тетраэдр, воздух - октаэдр, вода - икосаэдр, земля - куб. Далее, он писал, что существует пятая комбинация, которой Бог ограничил Мир, это додекаэдр. Архимед (290/ /211 до н.э) описал 13 полуправильных многогранников. Так же как правильные многогранники называют Платоновыми, полуправильные многогранники называют архимедовыми. Записи Архимеда об этих многогранниках были утеряны вместе с фигурами многогранников. Они были открыты вновь лишь в эпоху Ренессанса, и описание всех 13 многогранников было впервые опубликовано в книге Иоганна Кеплера в 1619 году, почти через две тысячи лет после смерти Архимеда. Голландский художник М.К. Эшер ( ) в некотором роде является отцом математического искусства. Математические идеи играют центральную роль в большинстве его картин за исключением лишь ранних работ.
5 Леонардо, узнавший о евклидовой геометрии, в рисунке изобразил, каким образом фигура человека с распростертыми руками может быть вписана и в круг, и в квадрат. Леонардо да Винчи ( ) известен своими достижениями в качестве изобретателя и художника. В его записных книгах содержатся первые из известных примеров анаморфного искусства, использующего искаженные сетки перспективы. Его наклонные анаморфные изображения представляют объекты, которые должны рассматриваться по углом, чтобы они выглядели неискаженными.
6 Темы в математическом искусстве Темы наиболее часто использующиеся в математическом изобразительном искусстве включают в себя использование многогранников, тесселляций, лент Мебиуса, невозможных фигур, фракталов и искаженных перспектив. Отдельные работы часто включают в себя одновременно несколько тем. Каждая из этих тем приведена ниже с описанием и примерами использования. Фракталы
7 Фрактал это объект, повторяющий сам себя в различных масштабах, которые связаны математическим способом. Фракталы формируются итерационно, многократно повторяя вычисления так, что получается объект высокой сложности с множеством мелких деталей. К сожалению, фракталы как таковые были недоступны Эшеру, потому что были формализованы и выделены в отдельную область математики лишь после его смерти. Эшер очень интересовался изображением бесконечного в пределах конечной области, в частности бесконечными тесселляциями. Он использовал сжимающиеся координатные сетки и гиперболическую геометрию для достижения этого эффекта, как показано в картинах «Предел круга» ( ) и «Предел квадрата» (1964).
8 Многогранник это трехмерное тело, гранями которого являются многоугольники. Существует всего пять правильных многогранников, у которых все стороны являются правильными многоугольниками и все вершины одинаковы. Они известны как многоугольники Платона или Платоновы тела. Также существует 13 выпуклых многогранников, гранями которых являются один, два или три правильных многоугольника, и у которых все вершины одинаковы. Они известны как тела Архимеда. Кроме этого существует бесконечное множество призм и анти призм с гранями в виде правильных многоугольников. Эшер использовал многогранники во многих своих работах, включая «Рептилии» (1949), «Двойной астероид» (1949) и «Гравитация»
9 Лента Мебиуса - это трехмерный объект, имеющий только одну сторону. Такая лента может быть легко получена из полоски бумаги, перекрутив один из концов полоски, а затем склеив оба конца друг с другом. Эшер изобразил ленту Мебиуса на работах «Всадники» (1946), «Лента Мебиуса II (Красные муравьи)» (1963) и «Узлы» (1965). Позднее, поверхности минимальной энергии стали вдохновением для многих математических художников. Брент Коллинз, использует ленты Мебиуса и поверхности минимальной энергии, а также другие виды абстракций в скульптуре. Лента Мебиуса
10 Тесселляции, известные также как покрытие плоскости плитками, являются коллекциями фигур, которые покрывают всю математическую плоскость, совмещаясь друг с другом без наложений и пробелов. Правильные тесселляции состоят из фигур в виде правильных многоугольников, при совмещении которых все углы имеют одинаковую форму. Существует всего три многоугольника, пригодные для использования в правильных тесселляциях. Это - правильный треугольник, квадрат и правильный шестиугольник. "Семь птиц". На этой картине изображены семь птиц, две из которых изображены в негативе на фоне ландшафта города Ахо в Аризоне. Последовательно уменьшающиеся фигуры птиц совмещаются друг с другом в виде фрактальной тесселляции. Хвостовые перья каждой птицы являются разделяют конструкцию напополам, отсекая примерно треть расстояния между кончиками крыльев. Каждая меньшая птица в свою очередь делит свою область аналогичным образом. Если этот процесс продолжать до бесконечности, получится набор точек, известный как множество Кантора или Канторова пыль.
11 Невозможные фигуры Невозможные фигуры - эти фигура, изображенная в перспективе таким способом, чтобы выглядеть на первый взгляд обычной фигурой. Однако при более внимательном рассмотрении зритель понимает, что такая фигура не может существовать в трехмерном пространстве. Эшер изобразил невозможные фигуры на своих известных картинах Бельведер(1958), "Восхождение и спуск" (1960) и "Водопад" (1961).
12 Искаженные и необычные перспективы Необычные системы перспективы, содержащие две или три исчезающие точки, также являются излюбленной темой многих художников. К ним также относится родственная область – анаморфное искусство. Эшер использовал искаженную перспективу в нескольких своих работах "Наверху и внизу" (1947), "Дом лестниц" (1951) и "Картинная галерея" (1956).
16 Золотое сечение в искусстве «Геометрия владеет двумя сокровищами – теоремой Пифагора и золотым сечением и если первое можно сравнить с мерой золота, то второе – с драгоценным камнем». Иоганн Кеплер
17 Из истории золотого сечения Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого сечения позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого сечения.
18 Заключение: Примеры взаимопроникновения математики в различные сферы искусства и наоборот можно приводить бесконечно…И чем дальше этим занимаешься, тем увлекательнее становится такая работа. Но даже приведенных примеров, я думаю, достаточно для того, чтобы согласиться со словами Бертрана Рассела: «Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».
19 1. Волошонов, А. В. Математика и искусство / А. В. Волошонов. – М, Просвещение, 2000 г. 2. Васютинский, Н. Золотая порция / Н. Васютинский. – М., Молодая гвардия, 1990 г. 3. Пидоу, Д. Геометрия и искусство / Д. Пидоу. – М., Мир, 1989 г. Список литературы
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.