Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемСветлана Черняева
1 В ы п о л н и т е с т и проверь з н а н и е т е о р и и.
2 Вариант 1
3 Вариант 2
4 М е д и а н ы, б и с с е к т р и с ы и в ы с о т ы треугольника.
5 м е д и а н а Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. медиана биссектриса 1 В Ы С О Т А б и с с е к т р и с а Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника. высота
6 Как называется отрезок АО? Медиана биссектриса высота м е д и а н а Медиана биссектриса высота б и с с е к т р и с а В Ы С О Т А А А А О О О
7 О А В С К М На рисунке построены высота, биссектриса, медиана. Щелкни мышкой на ответ, который ты считаешь верным. Медиана Высота Биссектриса СО СМ ВК м е д и а н а б и с с е к т р и с а В Ы С О Т А
8 В Ы С О Т А медиана биссектриса О каком отрезке это определение. а) Щёлкни мышкой по названию. б) Щёлкни мышкой по чертежу, где ты нашел этот отрезок. молодец! м е д и а н а б и с с е к т р и с а Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону… Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону… высота Щелкни мышкой по другим картинкам. р а д и у с
9 высота биссектриса О каком отрезке это определение. а) Щёлкни мышкой по названию. б) Щёлкни мышкой по чертежу, где ты нашел этот отрезок. умница! Отрезок, соединяющий вершину треугольника с серединой противоположной стороны … Отрезок, соединяющий вершину треугольника с серединой противоположной стороны … м е д и а н а б и с с е к т р и с а В Ы С О Т А медиана Щелкни мышкой по другим картинкам.
10 м е д и а н а Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника. В С М АN Q O Медианы треугольника пересекаются в одной точке! Эта точка называется центр тяжести.
11 Треугольник, который опирается на опору по линии медианы, находится в равновесии, т.к. медиана разбивает треугольник на два треугольника, равновеликие по площади. Треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести треугольника.
12 А В С К М O Т Высоты тупоугольного треугольника пересекаются в точке О, которая лежит во внешней области треугольника. Высоты прямоугольного треугольника пересекаются в вершине С. Высоты остроугольного треугольника пересекаются в точке О, которая лежит во внутренней области треугольника. O А В С Точка пересечения высот называется – ортоцентр.
13 Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. Эта точка тоже замечательная – точка пересечения биссектрис является центром вписанной окружности. O б и с с е к т р и с а
14 1 Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. В Ы С О Т А В Ы С О Т А Высота в прямоугольном треугольнике, проведенная из вершины острого угла, совпадает с катетом. Высота в тупоугольном треугольнике, проведенная из вершины острого угла, проходит во внешней области треугольника. В Ы С О Т А 11
15 перпендикуляра к прямой Для построения перпендикуляра к прямой используем чертежный угольник. Н А a. Отрезок АН – перпендикуляр к прямой a. Точка Н называется основанием перпендикуляра. a
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.