Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемvadim zabavin
1 Выполнил: Забавин Вадим. 9 «Б» класс
2 В природе часто встречаются разнообразные правильные многоугольники. Это могут быть треугольники, четырехугольнике, пятиугольники и т.д. Виртуозно компонуя их, природа создала бесконечное множество сложных, удивительно красивых, легких, прочных и экономичных конструкций.
3 Примерами правильных многоугольников в природе могут служить: Пчелиные соты, снежинки и другие. Рассмотрим их по подробней…
4 Пчелиные соты состоят из шестиугольников. Но почему пчелы «выбрали» для ячеек на сотах именно форму правильных шестиугольников? Из правильных многоугольников с одинаковой площадью наименьший периметр у правильных шестиугольников. При такой «математической» работе пчёлы экономят 2% воска. Количество воска сэкономленного при постройке 54 ячеек, может быть использовано для постройки одной такой же ячейки. Стало быть, мудрые пчёлы экономят воск и время для постройки сот.
5 Снежинки могут иметь форму треугольника или шестиугольника. Но почему только эти две формы? Так получилось, что молекула воды состоит из трех частиц – двух атомов водорода и одного атома кислорода. Поэтому при переходе частицы воды из жидкого состояния в твердое, ее молекула соединяется с другими молекулами воды, и образует только трех – или шестиугольную фигуру.
6 Также примером многоугольников в природе могут служить некоторые сложные молекулы углерода.
7 А вот еще один пример многоугольников. Но уже созданный не природой, а человеком. Это здание Пентагона. Он имеет форму пятиугольника. Но почему здание Пентагона имеет такую форму? Пятиугольную форму здания подсказал план местности, когда создавались эскизы проекта. В том месте проходило несколько дорог, которые пересекались под углом 108 градусов, а это и есть угол построения пятиугольника. Поэтому такая форма органично вписывалась в транспортную инфраструктуру, и проект был утвержден.
8 Здание Пентагона
9 В математике паркетом называют «замощение» плоскости повторяющимися фигурами без пропусков и перекрытий. Простейшие паркеты были открыты пифагорейцами около 2500 лет тому назад. Они установили, что вокруг одной точки могут лежать либо шесть правильных многоугольников, либо четыре квадрата, либо три правильных шестиугольника.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.