Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемdirector.edu54.ru
1 Light Amplification by Stimulated Emission of Radiation Лазер - квантовый генератор, испускающий когерентные электромагнитные волны вследствие вынужденного излучения активной среды, находящейся в оптическом резонаторе. В зависимости от вида активной среды различают газовые, твердотельные и жидкостные лазеры.
2 Майман (Maiman) Теодор (родился в 1927) Майман (Maiman) Теодор (родился в 1927)
3 Условное изображение процессов (a) поглощения, (b) спонтанного испускания и (c) индуцированного испускания кванта
4 Развитие лавинообраз ного процесса генерации в лазере
5 Трехуровневая схема оптической накачки. Указаны «времена жизни» уровней E2 и E3. Уровень E2 – метастабильный. Переход между уровнями E3 и E2 безызлучательный. Лазерный переход осуществляется между уровнями E2 и E1. В кристалле рубина уровни E1, E2 и E3 принадлежат примесным атомам хрома
6 Первый лазер на рубине, созданный в ФИАНе М.Д.Галаниным, А.М.Леонтовичем, З.А.Чижиковой, 1960 год
7 Схема устройства на примере рубинового лазера
8 Лазер обычно состоит из трёх основных элементов: Источник энергии (механизм «накачки»); Источник энергии (механизм «накачки»); Рабочее тело; Рабочее тело; Система зеркал («оптический резонатор»). Система зеркал («оптический резонатор»).
9 Источник накачки подаёт энергию в систему. электрический разрядник, электрический разрядник, импульсная лампа, импульсная лампа, дуговая лампа, дуговая лампа, другой лазер, другой лазер, химическая реакция химическая реакция взрывчатое вещество. взрывчатое вещество.
10 Рабочее тело основной определяющий фактор рабочей длины волны, а также остальных свойств лазера. Жидкость, например, в лазерах на красителях. Состоят из органического растворителя, например метанола, этанола или этиленгликоля, в которых растворены химические красители, например кумарин или родамин. Конфигурация молекул красителя определяет рабочую длину волны. Жидкость, например, в лазерах на красителях. Состоят из органического растворителя, например метанола, этанола или этиленгликоля, в которых растворены химические красители, например кумарин или родамин. Конфигурация молекул красителя определяет рабочую длину волны. Газы, например, углекислый газ, аргон, криптон или смеси, такие как в гелий-неоновых лазерах. Такие лазеры чаще всего накачиваются электрическими разрядами. Газы, например, углекислый газ, аргон, криптон или смеси, такие как в гелий-неоновых лазерах. Такие лазеры чаще всего накачиваются электрическими разрядами. Твёрдые тела, такие как кристаллы и стекло. Сплошной материал обычно легируется (активируется) добавкой небольшого количества ионов хрома, неодима, эрбия или титана. Типичные используемые кристаллы: алюмоиттриевый гранат (YAG), литиево-иттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло. Самые распространённые варианты: Nd:YAG, титан-сапфир, хром-сапфир (известный также как рубин), легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF), Er:YLF и Nd:glass (неодимовое стекло). Твердотельные лазеры обычно накачиваются импульсной лампой или другим лазером. Твёрдые тела, такие как кристаллы и стекло. Сплошной материал обычно легируется (активируется) добавкой небольшого количества ионов хрома, неодима, эрбия или титана. Типичные используемые кристаллы: алюмоиттриевый гранат (YAG), литиево-иттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло. Самые распространённые варианты: Nd:YAG, титан-сапфир, хром-сапфир (известный также как рубин), легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF), Er:YLF и Nd:glass (неодимовое стекло). Твердотельные лазеры обычно накачиваются импульсной лампой или другим лазером. Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, накачиваются электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков. Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, накачиваются электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.
11 Оптический резонатор Оптический резонатор, простейшей формой которого являются два параллельных зеркала, находится вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. Волна может отражаться многократно до момента выхода наружу. В более сложных лазерах применяются четыре и более зеркал, образующих резонатор. Качество изготовления и установки этих зеркал является определяющим для качества полученной лазерной системы. Оптический резонатор, простейшей формой которого являются два параллельных зеркала, находится вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. Волна может отражаться многократно до момента выхода наружу. В более сложных лазерах применяются четыре и более зеркал, образующих резонатор. Качество изготовления и установки этих зеркал является определяющим для качества полученной лазерной системы.
12 Дополнительные устройства Также, в лазерной системе могут монтироваться дополнительные устройства для получения различных эффектов, такие как поворачивающиеся зеркала, модуляторы, фильтры и поглотители. Их применение позволяет менять параметры излучения лазера, например, длину волны, длительность импульсов и т. д. Также, в лазерной системе могут монтироваться дополнительные устройства для получения различных эффектов, такие как поворачивающиеся зеркала, модуляторы, фильтры и поглотители. Их применение позволяет менять параметры излучения лазера, например, длину волны, длительность импульсов и т. д.
13 Механизм накачки He–Ne лазера. Прямыми стрелками изображены спонтанные переходы в атомах неона
14 Схема гелий-неонового лазера: 1 – стеклянная кювета со смесью гелия и неона, в которой создается высоковольтный разряд; 2 – катод; 3 – анод; 4 – глухое сферическое зеркало с пропусканием менее 0,1 %; 5 – сферическое зеркало с пропусканием 1–2 %
15 Гелий-неоновый лазер. Светящийся луч в центре электрический разряд.
16 Углекислотный лазер
17 Особенности излучения лазеров Монохроматичность Монохроматичность Когерентность Когерентность Малая расходимость пучка Малая расходимость пучка Мощность излучения Мощность излучения
18 Применение лазеров
20 Трудно поверить, что человек на крыше просто держит в руках лазерную указку, а не стоит рядом с аппаратом, размером с чемодан
21 лазер
22 Газовые лазеры Рабочее телоДлина волны Источник накачки Применение Гелий-неоновый лазер 632,8 нм (543,5 нм, 593,9 нм, 611,8 нм, 1,1523 мкм, 1,52 мкм, 3,3913 мкм) Электрический разряд Интерферометрия, голография, спектроскопия, считывание штрих- кодов, демонстрация оптических эффектов. Аргоновый лазер 488,0 нм, 514,5 нм, (351 нм, 465,8 нм, 472,7 нм, 528,7 нм) Электрический разряд Лечение сетчатки глаза, литография, накачка других лазеров. Криптоновый лазер 416 нм, 530,9 нм, 568,2 нм, 647,1 нм, нм, 752,5 нм, 799,3 нм Электрический разряд Научные исследования, в смеси с аргоном лазеры белого света, лазерные шоу.
23 Газовые лазеры Рабочее телоДлина волныИсточник накачкиПрименение Ксеноновый лазер Множество спектральных линий по всему видимому спектру и частично в УФ и ИК областях. Электрический разряд Научные исследования. Азотный лазер 337,1 нм Электрический разряд Накачка лазеров на красителях, исследование загрязнения атмосферы, научные исследования, учебные лазеры. Лазер на фтористом водороде 2,7 – 2,9 мкм (Фтористый водород) 3,6 – 4,2 мкм (фторид дейтерия) Химическая реакция горения этилена и трёхфтористого азота (NF 3 ) Лазерные вооружения. Способен работать в постоянном режиме в области мегаваттных мощностей.
24 Газовые лазеры Рабочее телоДлина волныИсточник накачкиПрименение Химический лазер на кислороде и иоде (COIL) 1,315 мкм Химическая реакция в пламени синглетного кислорода и иода Научные исследования, лазерные вооружения. Способен работать в постоянном режиме в области мегаваттных мощностей. Углекислотный лазер (CO 2 ) 10,6 мкм, (9,4 мкм) Поперечный (большие мощности) или продольный (малые мощности) электрический разряд Обработка материалов (резка, сварка), хирургия.
25 Газовые лазеры Рабочее телоДлина волны Источник накачки Применение Лазер на монооксиде углерода (CO) 2,6 – 4 мкм, 4,8 – 8,3 мкм Электрический разряд Обработка материалов (гравировка, сварка и т. д.), фотоакустическ ая спектроскопия. Эксимерный лазер 193 нм (ArF), 248 нм (KrF), 308 нм (XeCl), 353 нм (XeF) Рекомбинация эксимерных молекул при электрическом разряде Ультрафиолетовая литография в полупроводник овой промышленнос ти, лазерная хирургия, коррекция зрения.
26 Лазеры на красителях Рабочее тело Длина волны Источник накачки Применение Лазер на краси- телях нм (Stilbene), нм (Кумарин 102), нм (Родамин 6G), другие Другой лазер, импульс- ная лампа Научные исследования, спектроскопия, косметическая хирургия, разделение изотопов. Рабочий диапазон определяется типом красителя.
27 Лазеры на пара́х металлов Рабочее телоДлина волны Источник накачки Применение Гелий-кадмиевый лазер на парах металлов 440 нм, 325 нм Электрический разряд в смеси паров металла и гелия. Полиграфия, УФ детекторы валюты, научные исследования. Гелий-ртутный лазер на парах металлов 567 нм, 615 нм Электрический разряд в смеси паров металла и гелия. Археология, научные исследования, учебные лазеры. Гелий-селеновый лазер на парах металлов до 24 спектральных полос от красного до УФ Электрический разряд в смеси паров металла и гелия. Археология, научные исследования, учебные лазеры.
28 Лазеры на пара́х металлов Рабочее телоДлина волны Источник накачки Применение Лазер на парах меди 510,6 нм, 578,2 нм Электрический разряд Дерматология, скоростная фотография, накачка лазеров на красителях. Лазер на парах золота 627 нм Электрический разряд Археология, медицина.
29 Твердотельные лазеры Рабочее телоДлина волны Источник накачки Применение Рубиновый лазер694,3 нмИмпульсная лампа Голография, удаление татуировок. Первый представленный тип лазеров (1960). Алюмо-иттриевые лазеры с неодимовым легированием (Nd:YAG) 1,064 мкм, (1,32 мкм) Импульсная лампа, лазерный диод Обработка материалов, лазерные дальномеры, лазерные целеуказатели, хирургия, научные исследования, накачка других лазеров. Один из самых распространённых лазеров высокой мощности. Обычно работает в импульсном режиме (доли наносекунд). Нередко используется в сочетании с удвоителем частоты. Известны конструкции с квазинепрерывным режимом излучения.
30 Твердотельные лазеры Рабочее телоДлина волны Источник накачки Применение Лазер на фториде иттрия-лития с неодимовым легированием (Nd:YLF) 1,047 и 1,053 мкм Импульсная лампа, лазерный диод Наиболее часто используются для накачки титан– сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике. Лазер на ванадате иттрия (YVO 4 ) с неодимовым легированием (Nd:YVO) 1,064 мкмЛазерные диоды Наиболее часто используются для накачки титан- сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике. Лазер на неодимовом стекле (Nd:Glass) ~1,062 мкм (Силикатные стёкла), ~1,054 мкм (Фосфатные стёкла) Импульсная лампа, Лазерные диоды Лазеры сверхвысокой мощности (тераватты) и энергии (мегаджоули). Обычно работают в нелинейном режиме утроения частоты от 351 нм в устройствах лазерной плавки.
31 Твердотельные лазеры Рабочее телоДлина волны Источник накачки Применение Титан-сапфировый лазер нмДругой лазер Спектроскопия, лазерные дальномеры, научные исследования. Алюмо-иттриевые лазеры с тулиевым легированием (Tm:YAG) 2,0 мкмЛазерные диоды Лазерные радары Алюмо-иттриевые лазеры с иттербиевым легированием (Yb:YAG) 1,03 мкм Импульсная лампа, Лазерные диоды Обработка материалов, исследование сверхкоротких импульсов, мультифотонная микроскопия, лазерные дальномеры.
32 Твердотельные лазеры Рабочее телоДлина волныИсточник накачкиПрименение Алюмо-иттриевые лазеры с гольмиевым легированием (Ho:YAG) 2,1 мкмЛазерные диодыМедицина Церий- легированный литий- стронций(или кальций)- алюмо- фторидный лазер (Ce:LiSAF, Ce:LiCAF) ~280–316 нм Лазер Nd:YAG с учетверением частоты, Эксимерный лазер, лазер на парах ртути. Исследование атмосферы, лазерные дальномеры, научные разработки. Александритовый лазер с хромовым легированием Настраивается в диапазоне от 700 до 820 нм Импульсная лампа, Лазерные диоды. Для непрерывного режима – дуговая ртутная лампа Дерматология, лазерные дальномеры.
33 Твердотельные лазеры Рабочее телоДлина волны Источник накачки Применение Оптоволоконный лазер с эрбиевым легированием 1,53–1,56 мкмЛазерные диоды Оптические усилители в оптоволоконны х линиях связи. Лазеры на фториде кальция, легированном ураном (U:CaF 2 ) 2,5 мкмИмпульсная лампа Первый 4-х уровневый твердотельный лазер, второй работающий тип лазера (после рубинового лазера Маймана), охлаждался жидким гелием, сегодня не используется.
34 Полупроводниковые лазеры Рабочее телоДлина волны Источник накачки Применение Полупроводник овый лазерный диод Длина волны зависит от материала: 0,4 мкм (GaN), 0,63–1,55 мкм (AlGaAs), 3– 20 мкм (соли свинца) Электрический ток Телекоммуникации, голография, лазерные целеуказатели, лазерные принтеры, накачка лазеров других типов. AlGaAs-лазеры (алюминий-арсенид- галлиевые), работающие в диапазоне 780 нм используются в проигрывателях компакт-дисков и являются самыми распространёнными в мире.
35 Другие типы лазеров Рабочее телоДлина волны Источник накачки Применение Лазер на свободных электронах могут излучать и настраиваться в широком спектре излучения Пучок релятивистских электронов Исследования атмосферы, материаловедение, медицина, противоракетная оборона. Псевдо-никелево- самариевый лазер Рентгеновское излучение 17.3 нм Излучение в сверхгорячей плазме самария, создаваемое двойными импульсами лазера на неодимовом стекле. [1] Первый демонстрационный лазер, работающий в области жесткого рентгеновского излучения. Может применяться в микроскопах сверхвысокого разрешения и голографии. Его излучение лежит в «окне прозрачности» воды и позволяет исследовать структуру ДНК, активность вирусов в клетках, действие лекарств.
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.