Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемВера Бунина
1 Презентация к уроку: Пропорции в 6 классе.
2 Золотое сечение Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
3 Зодчий Хесира. Рельеф. Начало 3 тыс. до н.э. «Портретный деревянный рельеф «Зодчий Хесира» создан в начале III тысячелетия до н.э., пятьдесят веков тому назад. Мускулистое стройное тело живет; чувствуется мерный ритм пружи-нящей поступи, орлиный профиль прекрасен. Глядя на этот рельеф, начина-ешь понимать, в чем художественный смысл «распластанности» египетских фигур. Египетские рисовальщики оценили значение плечевого пояса как конструктивной основы туловища и раз навсегда выделили эту выразительную горизонтальность, пренебрегая тем, что она скрадывается при профильном положении фигуры. Они отобрали из фасного и профильного положения са-самые четкие, ясно читаесамые аспекты, объединив их вместе с замечательной ограниченностью и при этом достигнув гармонии с двухмерной плоскостью, на которой помещено изображение.
4 П и р а м и д ы… Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. Здесь же Пифагор попадает в персидский плен. Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой
5 Пифагор Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d. Отрезок прямой АВ можно разделить на две части следующими способами: на две равные части – АВ : АС = АВ : ВС; на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ : АС = АС : ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b = b : c или с : b = b : а. Рис. 1. Геометрическое изображение золотой пропорции
6 Греция. Парфенон.
7 П Р И М Е Р Ы Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки. Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции. Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0, Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.
8 В ж и в о п и с и Красные линии - отношения "золотого сечения". И вот что интересно: если продолжать "сечь" дальше таким же образом (в "золотой" пропорции, пополам и диагонали) - в композиции практически не находится ничего.
9 п р и р о д е Очень совершенна форма стрекозы, которая создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста. Многие насекосамые (например, бабочки, стрекозы) в горизонтальном разрезе имеют простые асимметричные формы, основанные на золотом сечении.
10 К О С М О С Е Здесь космос предстает во всей красе, даже одна галактика кажется бесконечной, сразу навевая мысли о мизерности...
11 П о э з и и Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник": Картину раз высматривал сапожник И в обуви ошибку указал; Взяв тотчас кисть, исправился художник, Вот, подбочась, сапожник продолжал: "Мне кажется, лицо немного криво... А эта грудь не слишком ли нага? Тут Апеллес прервал нетерпеливо: "Суди, дружок, не выше сапога!" Есть у меня приятель на примете: Не ведаю, в каком бы он предмете Был знатоком, хоть строг он на словах, Но черт его несет судить о свете: Попробуй он судить о сапогах!
12 М У З Ы К Е Наиболее обширное исследование проявлений золотого сечения в музыке было предпринято Л.Сабанеевым. Им было изучено две тысячи произведений различных композиторов. По его мнению, временное протяжение музыкального произведения делится «некоторыми вехами», которые выделяются при восприятии музыки и облегчают созерцание формы целого. Все эти музыкальные вехи делят целое на части, как правило, по закону золотого сечения.
13 Золотое сечение Витрувий и император Август. Гравюра XVIII в. Витрувий сформулировал формулу архитектурного сооружения: «Прочность польза красота». Но что есть красота в архитектуре? В чем красота и очарование церкви Покрова на Нерли, маленькой (высота от основания до маковки 24 метра), почти лишенной украшений, с простыми архитектурными формами? Построенная в 1165 году, она не потеряла своей привлекательности. Где кроется секрет красоты египетских пирамид, древнегреческого храма Парфенон, старой русской церкви Покрова на Нерли, Смольного собора в Петербурге, собора Парижской Богоматери в Париже? Французский зодчий 17 века Франсуа Блондель говорил: «Удовлетворение, которое мы испытываем, глядя на прекрасное произведение искусства, проистекает оттого, что в нем соблюдены правила и мера, ибо удовольствие в нас вызывает единственно лишь пропорции. Если же они отсутствуют, то, сколько бы мы ни украшали здание, эти наружные украшения не заменят нам внутреннюю красоту и привлекательность…» Тогда же родилось представление о том, что основой прекрасного является гармония. Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый – красоту в истине. Исследования показывают, что поиск «правила и меры» в архитектурных сооружениях, как правило, приводят к Золотому сечению и числу Фи.
14 Список источников
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.