Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемГалина Ольховская
1 МБОУ Глубокинская казачья СОШ 1 Каменского района Ростовской области Электромагнитное излучение: «РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ» Выполнила: Обучающаяся 11 -а класса Коротицына Марина п.Глубокий 2012 год
2 1. Определение рентгеновского излучения 2. Источники рентгеновского излучения 3. Основные свойства 4. История открытия 5. Применение 6. Рентгенология 7. Рентгеновская трубка
3 Определение рентгеновского излучения Рентгеновское излучение электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма- излучением, что соответствует длинам волн от до 10 7 м. Рентгеновские лучи излучаются при больших ускорениях электронов.
4 Источники рентгеновского излучения Естественные Искусственные Солнце Нейтронные звезды Рентгеновский аппарат Кинескоп монитора Атомная электростанция
5 Основные свойства 1. Интерференция 2. Дифракция рентгеновских лучей на кристаллической решетке 3. Большая проникающая способность
6 История открытия Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал X-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Но еще за 8 лет до этого в 1887 году Никола Тесла в дневниковых записях зафиксировал результаты исследования рентгеновских лучей и испускаемое ими тормозное излучение, однако ни Тесла, ни его окружение не придали серьёзное значение этим наблюдениям. Кроме этого, уже тогда Тесла предположил опасность длительного воздействия рентгеновских лучей на человеческий организм.
7 Применение При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов. При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов. Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией. В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
8 При помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде( либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуорисцентным анализом. В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность. Рентгенотерапия раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 2060 кв и кожно-фокусном расстоянии 37 см (короткодистанционная рентгенотерапия) или при напряжении кв и кожно-фокусном расстоянии см (дистанционная рентгенотерапия). Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).
9 Рентгенология Рентгенология – область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем, и диагностики заболеваний.
10 Рентгеновская трубка Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода.
11 Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий. В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, из молибдена или меди. В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло. Схематическое изображение рентгеновской трубки. X рентгеновские лучи, K катод, А анод (иногда называемый антикатодом), С теплоотвод, U h напряжение накала катода, U a ускоряющее напряжение, W in впуск водяного охлаждения, W out выпуск водяного охлаждения.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.