Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемДенис Сысоев
1 Выполнил : студент группы ИКТп -24 Мишурин Юрий
2 Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. Разработки в этой области ведут к революционным успехам в медицине, электронике, машиностроении и создании искусственного интеллекта. Если 10 лет назад единицы людей представляли себе, что такое нанотехнологии, то, через 5 лет, по оценкам экспертов, вся промышленность будет развиваться, используя технологии работы с атомами и молекулами. С помощью нанотехноло гий можно очищать нефть и победить многие вирусные заболевания, можно создать микроскопических роботов и продлить человеческую жизнь, можно победить СПИД и контролировать экологическую обстановку на планете, можно построить в миллион раз более быстрые компьютеры и освоить Солнечную систему. А представьте себе ноутбук с нанотехнологическими топливными ячейками вместо батареек. Такая машина, созданная японской компанией, может работать сутками без подзарядки. Область науки и техники, именуемая нанотехнологией, как и соответствующая терминология, появились сравнительно недавно. Однако её перспективы настолько грандиозны для нашей цивилизации, что необходимо широкое распространение основных идей нанотехнологии, " Нано " означает одну миллиардную долю чего - либо. Например, нанометр - одна миллиардная доля метра. Примерно таковы размеры молекул ( поэтому часто нанотехнологию называют также молекулярной технологией ). Для сравнения, человеческий волос приблизительно в шестьдесят тысяч раз толще одной молекулы. Наноразмерный масштаб используют для ха - рактеристики самых маленьких объектов, например, атомов и молекул. Размер атома кремния составляет 0,24 нм, а молекулы фуллерена С 60 ( « футбольного мяча », состоящего из шестидесяти атомов углерода ) - 0,75 нм.
3 Нанороботы, или наноботы роботы, размером сопоставимые с молекулой ( менее 10 нм ), обладающие функциями движения, обработки и передачи информации, исполнения программ. Другие определения описывают наноробота как машину, способную точно взаимодействовать с наноразмерными объектами или способной манипулировать объектами в наномасштабе. Вследствие этого, даже крупные аппараты, такие как атомно - силовой микроскоп можно считать нанороботами, так как он производит манипуляции объектами на наноуровне. Кроме того, даже обычных роботов, которые могут перемещаться с наноразмерной точностью, можно считать нанороботами. Кроме слова « наноробот » также используют выражения « нанит » и « наноген », однако, технически правильным термином в контексте серьёзных инженерных исследований все равно остается первый вариант.
4 На данный момент, нанороботы находятся в научно - исследовательской стадии создания. Некоторыми учёными утверждается, что уже созданы некоторые компоненты нанороботов. Разработке компонентов наноустройств и непосредственно нанороботам посвящен ряд международных научных конференций. Уже созданы некоторые примитивные прототипы молекулярных машин. Например, датчик, имеющий переключатель около 1,5 нм, способный вести подсчет отдельных молекул в химических образцах. Недавно университет Райса продемонстрировал наноустройства для использования их в регулировании химических процессов в современных автомобилях. Одним из самых сложных прототипов наноробота является «DNA box», созданный в конце 2008 года международной группой под руководством Йоргена Кьемса. Устройство имеет подвижную часть, управляемую с помощью добавления в среду специфических фрагментов ДНК. По мнению Кьемса, устройство может работать как « ДНК - компьютер », т. к на его базе возможна реализация логических вентилей. Важной особенностью устройства является метод его сборки, так называемый ДНК оригами ( анг. ), благодаря которому устройство собирается в автоматическом режиме. В 2010 году были впервые продемонстрированы нанороботы на основе ДНК, способные перемещаться в пространстве. В связи с развитием направления научных исследований нанороботов, сейчас наиболее остро стоят вопросы их конкретного проектирования. Одной из инициатив по решению этой проблемы является « Сотрудничество по разработке нанофабрик », основанное Робертом Фрайтасом и Ральфом Меркле в 2000 году, деятельность которого сосредоточена на разработке практической программы исследований, которая направлена на создание контролируемой алмазной механосинтетической нанофабрики, которая будет способна к производству медицинских нанороботов на основе алмазных соединений. Для этого разрабатываются технологии зондирования, управления силовыми связями между молекулами и навигации. Создаются проекты и прототипы инструментария для манипуляций, двигательного аппарата ( молекулярные моторы ) и " бортового компьютера ".
5 Наноразмерные машины, способные осуществлять вращение при приложении к ним энергии. Главной особенностью молекулярных моторов являются повторяющиеся однонаправленные вращательные движения происходящие при подаче энергии. Для подачи энергии используются химический, световой метод, а также метод туннелирования электронов. Кроме молекулярных двигателей, создаются также наноэлектродвигатели, сходные по конструкции с макроскопическими аналогами [, проектируются двигатели, принцип работы которых основывается на использовании квантовых эффектов.
6 По аналогии с традиционным электродвигателем, наномасштабные молекулярные моторы могут быть приведены в движение путем резонансного или нерезонансного туннелирования электронов. Наноразмерные вращающиеся машины на основе этих принципов были разработаны Петром Кралом и его сотрудниками в Университете штата Иллиойс в Чикаго.
7 В 1999 году из лаборатории доктора Бена Феринги в университете Гронингена ( Нидерланды ) поступило сообщение о создании однонаправленного молекулярного ротора. Их молекулярный двигатель вращения на 360 ° состоит из бисхелицина соединенного двойной аксиальной связью и имеющий два стереоцентра.
8 Впервые о создании молекулярного двигателя вращения сообщил Росс Келли в своей работе в 1999 году. Его система состояла из трех триптициновых роторов ихелициновой части, и была способна выполнять однонаправленные вращения в плоскости 120 °.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.