Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемВладислав Подосенов
1 Подготовил ученик 10 класса Машканцев Юрий ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ
2 Тема 4. ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ 4.1. Поляризация диэлектриков 4.2. Различные виды диэлектриков 4.3. Вектор электрического смещения 4.4. Поток вектора электрического смещения.4.4. Поток вектора электрического смещения Теорема Остроградского-Гаусса для вектора 4.5. Теорема Остроградского-Гаусса для вектора 4.6. Изменение и на границе раздела двух диэлектриков 4.6. Изменение и на границе раздела двух диэлектриков
3 4.1. Поляризация диэлектриков Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса: диэлектрики полупроводники проводники
4 В идеальном диэлектрике свободных зарядов, то есть способных перемещаться на значительные расстояния (превосходящие расстояния между атомами), нет. Но это не значит, что диэлектрик, помещенный в электростатическое поле, не реагирует на него, что в нем ничего не происходит.
5 Смещение электрических зарядов вещества под действием электрического поля называется поляризацией. Способность к поляризации является основным свойством диэлектриков.
6 Поляризуемость диэлектрика включает составляющие – электронную, ионную и ориентационную (дипольную).
7 Главное в поляризации – смещение зарядов в электростатическом поле. В результате, каждая молекула или атом образует электрический момент Р
8 Внутри диэлектрика электрические заряды диполей компенсируют друг друга. Но на внешних поверхностях диэлектрика, прилегающих к электродам, появляются заряды противоположного знака (поверхностно связанные заряды).
9 Обозначим – электростатическое поле связанных зарядов. Оно направлено всегда против внешнего поля Следовательно, результирующее электростатическое поле внутри диэлектрика
10 Поместим диэлектрик в виде параллелепипеда в электростатическое поле Электрический момент тела, можно найти по формуле: – поверхностная плотность связанных зарядов.
11 Введем новое понятие – вектор поляризации – электрический момент единичного объема. (4.1.4) где n – концентрация молекул в единице объема, – электрический момент одной молекулы.
12 С учетом этого обстоятельства, (4.1.5) (т.к. – объем параллелепипеда). Приравняем (4.1.3.) и (4.1.5) и учтем, что – проекция P на направление – вектора нормали, тогда
13 Поверхностная плотность поляризационных зарядов равна нормальной составляющей вектора поляризации в данной точке поверхности. Отсюда следует, что индуцированное в диэлектрике электростатическое поле E' будет влиять только на нормальную составляющую вектора напряженности электростатического поля.
14 Вектор поляризации можно представить так: (4.1.7) где – поляризуемость молекул, – диэлектрическая восприимчивость – макроскопическая безразмерная величина, характеризующая поляризацию единицы объема.
15 Следовательно, и у результирующего поля изменяется, по сравнению с,только нормальная составляющая. Тангенциальная составляющая поля остается без изменения. В векторной форме результирующее поле можно представить так: (4.1.8) Результирующая электростатического поля в диэлектрике равно внешнему полю, деленному на диэлектрическую проницаемость среды ε: (4.1.9)
16 Величина характеризует электрические свойства диэлектрика. Физический смысл диэлектрической проницаемости среды ε – величина, показывающая во сколько раз электростатическое поле внутри диэлектрика меньше, чем в вакууме: (4.1.10)
17 График зависимости напряженности электростатического поля шара от радиуса, с учетом диэлектрической проницаемости двух сред ( и ), показан на рисунке Как видно из рисунка, напряженность поля изменяется скачком при переходе из одной среды в другую.
18 4.2. Различные виды диэлектриков В 1920 г. была открыта спонтанная (самопроизвольная) поляризация. Всю группу веществ, назвали сегнетоэлектрики (или ферроэлектрики). Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла). У изотропных диэлектриков поляризация всех молекул одинакова, у анизотропных – поляризация, и следовательно, вектор поляризации в разных направлениях разные.
19 Рассмотрим основные свойства сегнетоэлектриков: 1. Диэлектрическая проницаемость ε в некотором температурном интервале велика( ). 2. Значение ε зависит не только от внешнего поля E 0, но и от предыстории образца. 3. Диэлектрическая проницаемость ε (а следовательно, и Р ) – нелинейно зависит от напряженности внешнего электростатического поля (нелинейные диэлектрики).
20 Это свойство называется диэлектрическим гистерезисом Здесь точка а – состояние насыщения.
21 4. Наличие точки Кюри – температуры, при которой (и выше) сегнетоэлектрические свойства пропадают. При этой температуре происходит фазовый переход 2-го рода. Например, титанат бария: 133º С; сегнетова соль: – º С; ниобат лития 1210º С.
22 Стремление к минимальной потенциальной энергии и наличие дефектов структуры приводит к тому, что сегнетоэлектрик разбит на домены
23 Среди диэлектриков есть вещества, называемые электреты – диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электростатического поля (аналоги постоянных магнитов).
24 Пьезоэлектрики Некоторые диэлектрики поляризуются не только под действием электрического поля, но и под действием механической деформации. Это явление называется пьезоэлектрическим эффектом. Явление открыто братьями Пьером и Жаком Кюри в 1880 году. Если на грани кристалла наложить металлические электроды (обкладки) то при деформации кристалла на обкладках возникнет разность потенциалов. Если замкнуть обкладки, то потечет ток.
25 Рис. 4.7 Рис. 4.7 Возможен и обратный пьезоэлектрический эффект: Возникновение поляризации сопровождается механическими деформациями.Возникновение поляризации сопровождается механическими деформациями. Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0. Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0.
26 Сейчас известно более 1800 пьезокристаллов.Сейчас известно более 1800 пьезокристаллов. Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Используются в пьезоэлектрических адаптерах и других устройствах). Используются в пьезоэлектрических адаптерах и других устройствах).
27 Пироэлектрики Пироэлектричество – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. При нагревании один конец диэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов.
28 Все пироэлектрики являются пьезоэлектриками, но не наоборот. Некоторые пироэлектрики обладают сегнетоэлектрическими свойствами.
29 В качестве примеров использования различных диэлектриков можно привести: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; пироэлектрики – позисторы, детекторы ИК- излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.
30 4.3. Вектор электрического смещения Имеем границу раздела двух сред с ε 1 и ε 2, так что, ε 1 < ε 2 (рис. 4.8). Рис. 4.8 или или Напряженность электрического поля E изменяется скачком при переходе из одной среды в другую.
31 Главная задача электростатики – расчет электрических полей, то есть в различных электрических аппаратах, кабелях, конденсаторах,…. Эти расчеты сами по себе не просты да еще наличие разного сорта диэлектриков и проводников еще более усложняют задачу.
32 Для упрощения расчетов была введена новая векторная величина – вектор электрического смещения (электрическая индукция). (4.3.1) Из предыдущих рассуждений E 1 ε 1 = ε 2 E 2 тогда ε 0 ε 1 E 1 = ε 0 ε 2 E 2 отсюда и D n1 = D n2.
33 Таким образом, вектор остается неизменным при переходе из одной среды в другую и это облегчает расчет.
34 Зная и ε, легко рассчитывать
35 отсюда можно записать: (4.3.3) – вектор поляризации, χ – диэлектрическая восприимчивость среды, характеризующая поляризацию единичного объема среды. где
36 Для точечного заряда в вакууме Для имеет место принцип суперпозиции, как и для, т.е.
37 4.4. Поток вектора электрического смещения. Теорема Остроградского-Гаусса для вектора Пусть произвольную площадку S пересекают линии вектора электрического смещения под углом α к нормали:
38 В однородном электростатическом поле поток вектора равен:
39 Теорему Остроградского-Гаусса для вектора D получим из теоремы Остроградского-Гаусса для вектора E :
40 Теорема Остроградского-Гаусса для (4.4.1) Поток вектора через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами внутри объема, ограниченного данной поверхностью. Это позволяет не рассматривать связанные (поляризованные) заряды, влияющие на и упрощает решение многих задач. В этом смысл введения вектора.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.