Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемАфанасий Гнатов
1 WORKSHOP 10 TIME DEPENDENT BOUNDARY CONDITIONS
2 WS10-2 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation
3 WS10-3 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Model Description In this exercise you will define MACROs and microfunctions. MACRO definitions are edited into a template.dat.apnd file which you create in the same directory as your database. MACRO definitions link Template IDs (TIDs) which are applied in the Loads/BCs form to Microfunction IDs (MFIDs) which are defined in the Fields form. A microfunction can be a function of time or temperature. This provides a mechanism for defining time or temperature varying heat load or temperature boundary conditions. Only constant or spatially varying loads or boundary conditions can be defined directly in the Loads/BCs forms, except where time table or temperature table options are available. In this exercise we will sample three of the available microfunctions: a sine wave, a flip-flop function and a linearly interpolated data table. These functions are applied to three of the four corners of an aluminum plate modeled from shell elements. The fourth plate corner will have a constant boundary temperature.
4 WS10-4 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Objectives Model an aluminum plate. Use microfunctions to apply time dependent boundary conditions to the plate corners. Run a transient analysis to produce time dependent results.
5 WS10-5 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Exercise Overview 1. Create a new database named exercise_10.db. Set Tolerance to Default, and the Analysis Code to MSC/THERMAL. 2. Create a 0.15m x 0.15m plate surface. 3. Mesh the surface with an IsoMesh of quad4 elements, global edge length of Apply element properties to the quad4s defining them as shell elements having a material name (MID) of 1 and a thickness of 0.01m 5. Create 3 time dependent microfunctions using Fields: Create/Non Spatial/ General. 6. Define 4 temperature boundary conditions in Loads/BCs 1 fixed nodal temperature in the lower left corner of the plate and 3 variable nodal temperatures on the remaining corners. 7. Use Analysis/Build Template to create the MACRO definitions and write the template.dat.apnd file. 8. Prepare and submit the model for analysis specifying that it is a transient analysis form t=0s to t=360s with output each 30s, that the global initial temperature is 100°C, and that the calculation and output temperature scales should be °C. 9. Read the results files using Shareware and plot results for several time steps. Do not delete the database from your directory since it will be used in a future exercise. 10. Quit MSC.Patran.
6 WS10-6 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 1: Create a New Database Create a new database called exercise_10. a. File. b. Select New From the drop down menu. c. Enter exercise_10 for File Name and Click OK. d. Under New Model Preferences, select Default. e. Under Analysis Code choose MSC.THERMAL. f. Under Analysis Type select Thermal. g. OK. a b c d e f g
7 WS10-7 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create Geometric Surface Create a 0.15m x 0.15m plate surface. a. Geometry. b. Create/Surface/ XYZ. c. Under Vector Coordinate List enter. d. Apply. a b c d
8 WS10-8 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 3: IsoMesh the Surface Mesh the surface with an IsoMesh of quad 4 elements. a. Finite Elements. b. Create/Mesh/ Surface. c. Set the Global Edge Length to d. Click in the Surface List and select Surface 1. e. Apply. f. Turn on Node Labels using the following labels. a b c d e f
9 WS10-9 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 4: Apply Element Properties Apply element properties to the Quad4s defining them as shell elements. a. Properties. b. Create/2D/ Shell. c. Enter Prop1 for Property Set Name. d. Click on Input Properties. e. Enter 1 for the Material Name. f. Enter 0.01 for the Shell Corner Thickness. g. OK. h. Select Surface 1 under Select Members. i. Add. j. Apply. a e f g c b h i j d
10 WS10-10 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 5: Create Microfunctions Create 2 time dependent microfunctions. a. Fields. b. Create/Non Spatial/General. c. Enter Tsine for Field Name. d. Click Input Data… e. Select mfid_sine_wave under Select Function Term. f. Enter 11 for Micro Function ID. g. Enter 15.0 for P1 Value. h. Enter for P2 Value. i. Enter for P3 Value. j. Enter for P4 Value. k. OK. l. OK. m. Apply. a b c d f g h i j k
11 WS10-11 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 5: Create Microfunctions (Cont.) Create 2 time dependent microfunctions. a. Under Field Name enter Tflip- flop. b. Click Input Data… c. Under Select Function Term select mfid_flip_flop. d. Enter 121 for Micro Function ID. e. Enter 60.0 for P1 Value. f. Enter for P2 Value. g. Enter for P3 Value. h. Enter for P4 Value. i. OK. j. OK. k. Apply. a b d e f gh i
12 WS10-12 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 6: Apply Boundary Conditions Define 4 Temperature boundary conditions. a. Loads/BCs. b. Create/Temperature/ Nodal. c. Under Option set to Fixed. d. Enter T1 for New Set Name. e. Click on Input Data… f. Under Fixed Temperature enter g. OK. h. Click on Select Application Region… i. Set the Geometry Filter to FEM. j. Select Node 1 under Select Nodes. k. Add. l. OK. m. Apply. a b c d e f g h i j k l m
13 WS10-13 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 6: Apply Boundary Conditions (Cont.) Create a variable boundary temperature. a. Loads/BCs. b. Create/Temperature/ Nodal. c. Under Option select Template. d. Enter T11 for New Set Name. e. Click Input Data… f. Enter 2 for Template ID. g. OK. h. Click Select Application Region. i. Under Select Nodes select Node 11. j. Click Add, OK, then Apply. k. Repeat these steps with New Set Name T121, using Template ID 3, and Node 121. a b c d e f g h i j j j
14 WS10-14 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Create the last nodal LBC using the Time Table Option. a. Loads/BCs. b. Create/Temperature/ Nodal. c. Set Option to Time Table. d. Enter T111 for New Set Name. e. Click Input Data… f. Enter T111 for Name - Temperature Table. g. Enter T111 versus time for Description. h. Enter 0.0 for Time Input Value. i. Enter for Temperature Input Value. j. Repeat procedure for the following data k. OK. l. Continued on next page. TimeTemperature a b c d e f g h k i Step 6: Apply Boundary Conditions (Cont.)
15 WS10-15 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Create the last nodal LBC using the Time Table Option (continued). a. Click on Select Application Region. b. Select Node 111 under Select Nodes. c. Add. d. OK. e. Apply. b c d Step 6: Apply Boundary Conditions (Cont.)
16 WS10-16 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 7: Create template.dat.apnd File Use the Analysis: Build Template to create the MACRO definitions in the template.dat.apnd file. a. Analysis. b. Build Template. c. Click on Create Template File… d. Set to Create/MACRO/Data Entry. e. Enter 2 for MACRO ID. f. Enter 11 for MFIDs g. Apply. h. A Template Entries form will appear. Close it by clicking Cancel. i. Repeat for MACRO ID 3, with MFID 121, except do not cancel Template Entries form. a b c d e f g
17 WS10-17 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 7: Create template.dat.apnd File (Cont.) Continue to create template.dat.apnd file. a. Click on Write File… b. Enter the file name template.dat.apnd c. OK. d. Cancel. e. Cancel. a bc d e
18 WS10-18 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Prepare and Run Analysis Prepare and submit the model for analysis. a. Analysis. b. Analyze/Full Model/ Full Run. c. Click Solution Type… d. Select 1, Transient Run for Select Thermal Solution. e. OK. f. Click Solution Parameters.. g. Click Celsius for Calculation Temperature Scale. h. Click Run Control Parameters… i. Enter for Stop Time. j. Enter for Initial Temperature k. Select Celsius for Initial Temperature Scale. l. OK. m. OK. a d k i j l b f c
19 WS10-19 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Prepare and Run Analysis (Cont.) Prepare and submit the model for analysis. a. Click on Output Requests… b. Select Celsius for Units Scale for Output Temperatures. c. Click Print Interval Controls.. d. Enter 30.0 for Initial Print Interval. e. OK. f. OK. g. Apply. a b c f g d e
20 WS10-20 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 9: Read and Plot Results Read the results files using Utilities and plot the results for several time steps. a. Click on Utilities. b. Select Thermal. c. Select Thermal Results Reader… d. Click OK after the disclaimer appears. e. When the Result Reader form appears select the path that will lead to exercise_10. f. Change *.nrf* in File name to nr* g. Click Get Files. h. Apply. a c b e g h f Note: all the nr* files will be read into the MSC.Patran database. Warning messages are issued during import, e.g. $# No results were found for QMACRO Function Input,. No results type created in database.. These messages can be ignored.
21 WS10-21 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Optional method follows for reading the results files. Use only if Utilities is unavailable. a. Analysis. b. Read Result/Result Entities. c. Click on Select Results File.. d. Under directories find the path that leads to exercise_10. e. Under Available files select nr0.nrf.01. f. OK. g. Click Select Rslt Template File… h. Under Files select pthermal_1_nodal.res_tmpl. i. OK. j. Apply. k. Repeat this process for all the remaining result files. a b c d f g h i e j Note: if for whatever reason Utilities are unavailable the standard MSC.Patran method of reading the results files can be used (see following). However, a Global Variable for time will not be created for the result cases. This will adversely affect the animation that is to be created in a subsequent workshop. Step 9: Read and Plot Results (Cont.)
22 WS10-22 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Plot the Results. a. Results. b. Create/Quick Plot. c. Select Time: D+02S.. for Select Result Cases. d. Select Temperature for Select Fringe Result. e. Select Fringe Attributes icon. f. In Display select Element Edges. g. Click on Label Style.. h. Under Label Format select Fixed. i. Using the slider bar select 4 Significant figures. j. OK. k. Apply. a b c d e f i j k h g Step 9: Read and Plot Results (Cont.)
23 WS10-23 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 9: Read and Plot Results (Cont.)
24 WS10-24 PAT312, Workshop 10, December 2006 Copyright 2007 MSC.Software Corporation Step 10: Quit MSC.Patran Quit MSC.Patran. a. Select File. b. Click Quit from the drop down menu.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.