Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемИнесса Харина
1 WORKSHOP 17 ANALYSIS OF A FUEL NOZZLE TIP USING CONVECTION BETWEEN REGIONS
2 WS17-2 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation
3 WS17-3 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Objective Model an axisymmetric slice of a fuel nozzle tip. Apply advective, radiative, and convective boundary conditions. Run a steady state analysis and display results.
4 WS17-4 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Model Description: In this exercise you will create an axisymmetric model of a fuel nozzle tip. You will model the heat transfer contribution of the fuel flow using an advective boundary condition. The geometry and boundary conditions for the problem are shown below The interior surface of the nozzle across which the fuel flows must be coupled to the fuel flow with a heat transfer coefficient. Since the corresponding fluid sink will not be a single node but a series of nodes. Between regions (fixed) convection will be used to couple the fuel nodes to the tube surface
5 WS17-5 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Exercise Overview: 1. Create a new database named exercise_17.db. Set the Tolerance to Default, and the Analysis Code to MSC/THERMAL. 2. Create the nozzle, fluid stream, and Convective Quad geometry. 3. Verify that surface normals are consistent with RxZ reversing any surface normals which are not consistent with RxZ. 4. Mesh the model surfaces with an IsoMesh of Quad4 elements and the curve representing the fluid stream with Bar2 elements, global edge length of Use Finite Elements/Create/Node/Edit to create two ambient nodes 998 and 999 for the ambient and flame temperatures, respectively. 6. Equivalence the nodes at the mating surface edges. 7. Apply Thermal Axisymmetric element properties to the nozzle and Advection Bar element properties to the flow stream. 8. Define three fixed temperature, three convective, and two radiative boundary condition in Loads/BCs 9. Create and post a group and Nozzle which only includes the nozzle element. 10. Prepare and submit the model for analysis specifying that it is steady state analysis including viewfactor and radiation resistor computations, for an axisymmetric model with unit conversions from inches to feet that all calculations and output should be in F. 11. Read and plot the results. 12. Quit MSC.Patran.
6 WS17-6 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 1: Open a New Database Create a new database called exercise_17. db a. File / New. b. Enter exercise_17 as the file name. c. Click OK. d. Choose Default Tolerance. e. Select MSC/THERMAL as the Analysis Code. f. Click OK. e b c d d a
7 WS17-7 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry Create the nozzle, fluid stream, and convective quad geometry. a. Geometry: Create/Surface/ XYZ. b. Enter for Vector Coordinate List. c. Enter [ ] for Origin Coordinate List. d. Click Apply. e. Click the Show Label icon f. Create the second surface by changing Vector Coordinates List to g. Click in Origin Coordinates List and select the point in the lower right corner of Surface 1, Point 4. h. Click Apply. i. Select Viewing: Scale Factors… to increase the scale of the model in the Y- direction. j. Enter 5.0 for Model Y k. Click Apply, then Cancel. e b c d a i
8 WS17-8 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry (Cont.) a f c b c d e g c f Create the surface that will represent the geometry where the steel and still air will reside. a. Geometry. b. Transform/Surface/ Translate. c. Click inside Direction Vector, select the tip and base icon and select Point 5, then Point 6 in the viewport. d. Enter 2 for the Repeat Count. e. Deselect Auto Execute. f. Click in the Surface List box and drag a rectangle around both surfaces in the view port. g. Apply. a
9 WS17-9 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation b c h e Step 2: Create the Nozzle and Fluid Stream Geometry (Cont.) Create the two curves where the bar elements will be located. a. Geometry: Create/Curve/XYZ. b. Enter for Vector Coordinate List. c. Deselect Auto Execute. d. Insert [0 0 0] to Origin Coordinates List. e. Click Apply. f. To create the second curve set Vector and Origin List to and Point 14, respectively. g. Click Apply. h. Delete Surface 3 to create the space for the air gap. Geometry: Delete/Any i. Select Surface 3 for Geometric Entity List. j. Click Apply. k. Refresh the graphics. a f i j g k d f
10 WS17-10 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 3: Verify Surface Normals and Flow Direction Verify that surface normals are consistent with RxZ. Reverse any surface normals which are not consistent with RxZ. a. To verify normals change to an isometric view using the Tool Bar icon. b. Geometry: Show/Surface/Normal c. Drag a rectangle around all surfaces in the viewport for Surface List. d. Click Apply. e. Geometry: Edit/Surface/Reverse f. Deselect Auto Execute. g. Select all surfaces in the viewport for Surface List. h. Click Apply. i. Click Draw Normal Vectors button. j. Display: Geometry… k. Select Show Parametric Direction. l. Click Apply, then Cancel. m. Return to default Front view. b c i e a f j k h l d g m
11 WS17-11 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Verify that surface normals are consistent with RxZ. Reverse any surface normals which are not consistent with RxZ. (continued) a. Remove parametric directions display by clicking on Display: Geometry… b. Deselect Show Parametric Direction. c. Click Apply, then Cancel. d. Click on Reset Graphics Step 3: Verify Surface Normals and Flow Direction (Cont.) b c a f g
12 WS17-12 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 4: IsoMesh the Surfaces and Curves Mesh the model surfaces with IsoMesh using Quad4 elements, and the curves, representing the fluid stream, with IsoMesh using Bar2 elements. a. Elements: Create/Mesh/Surface. b. Drag a rectangle around all surfaces in the viewport for Surface List. c. Enter for Global Edge Length. d. Click Apply. e. Create Bar2 elements along Curves 1 and 2. Elements: Create/Mesh/Curve. f. Select Curves1 and 2 using the shift- left mouse button for Curve List. g. Enter for Global Edge Length. h. Click Apply. b c d a e f g h
13 WS17-13 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 4: IsoMesh the Surfaces and Curves (Cont.)
14 WS17-14 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 5: Create Boundary Nodes Use Finite Elements: Create/ Node/Edit to create two ambient nodes Node 998 and 999 for the ambient and flame temperatures. a. Elements: Create/Node/Edit. b. Enter 998 for Node ID List. c. Deselect Associate with Geometry. d. Deselect Auto Execute e. Enter [ ] for Node Location List. f. Click Apply. g. Repeat for Node 999 located at [ ]. b c d a f e
15 WS17-15 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Increase the size of the node markers. Use either Display: Finite Elements… or the associated tool bar icon to change the node size. a. Display: Finite Elements… b. Use slider bar to adjust Node Size to 9. c. Click Apply, then Cancel. d. Display: Entity Color/Label/Render… e. Hide All Geometry Labels f. Click Apply, then Cancel. b c e Step 5: Create Boundary Nodes (Cont.) a d f Node 998 Node 999
16 WS17-16 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 6: Equivalence Nodes Equivalence the nodes at the mating surface edges. a. Elements: Equivalence/All/Tolerance Cube b. Click Apply. b a
17 WS17-17 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 7: Apply Element Properties to Nozzle Apply Thermal Axisymmetric element properties to the nozzle, and Advection Bar element properties to the flow stream. a. Use tool bar Label Control icon to display Surface labels. b. Properties: Create/2D/Thermal Axisymmetric. c. Enter Nickel for Property Set Name. d. Click Input Properties… e. Enter 243 for Material Name. f. Click OK g. Select Surface 1, 2, and 4 in the viewport using Shift-left mouse button for Select Members. h. Click Add, then Apply. i. Repeat these steps for Steel, MID 379, and Surfaces 5 and 6. b c d a e f g h
18 WS17-18 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation The last element property to be created will define the Bar2 elements as advective bars. a. Properties: Create/1D/Advection bar b. Enter Adv_bars for Property Set Name… c. Click Input Properties… d. Enter 1 for Fluid Spec Heat MPID. e. Enter 50 for Mass Flow Rate. f. Click OK. g. Select Curves 1 and 2, using Shift- left mouse button, for Select Members. h. Click Add, then Apply. c d Step 7: Apply Element Properties to Nozzle (Cont.) a b e f g h
19 WS17-19 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions Define three fixed temperature, three convective, and two radiative boundary condition in Loads/BCs. a. Loads/BCs: Create/Temperature/Nodal b. Enter Fixed for Option. c. Enter T_air for New Set Name d. Click Input Data… e. Enter for Fixed Temperature f. Click OK. g. Click Select Application Region… h. Select FEM for Geometry Filter. i. Select Node 998 in the viewport for Select Nodes. j. Click Add, OK, and Apply. k. Repeat these steps for a New Set Name T_flame of 4000 °F applied to Node 999, located to the right of the nozzle, and for a New Set Name T_fuel of 200 °F applied to Node 221, located at the lower left corner of the model at the fuel stream inlet. e f h j i b c d g a j Node 998 Node 999 Node 221
20 WS17-20 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.)
21 WS17-21 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.) Create the ambient convection boundary condition.Use a New Set Name Amb_conv, a Convection Coefficient of 500.0, and a Fluid Node Node 998. a. Loads/BCs: Create/Convection/Element Uniform b. Select Template, Convection for Options. c. Enter Amb_conv for New Set Name. d. Select 2D for Target Element Type. e. Click Input Data… f. Enter 500 for Convection Coefficient. g. Select node Node 998 for Fluid Node ID. h. Click OK. i. Click Select Application Region… j. Select Geometry for Geometry Filter. k. Select Edge icon from the select menu. l. Select the top edges of Surfaces 1 and 2, Surface 1.3 and 2.3, using the Shift-left mouse button for Select Surfaces or Edges. m. Click Add, OK, and Apply. b c d e i f g h j l m k a m m
22 WS17-22 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation g h Step 8: Apply Boundary Conditions (Cont.) Create gap condition across still air gap with h=k/L, where k=0.029 BTU/ hr ft 2 °F and L=0.05/12 ft. Hence h= 7.0 BTU/hr ft 2 °F. a. Loads/BCs: Create/Convection/Element Uniform b. Select Fixed Coefficient for Options. c. Enter Still_air for New Set Name. d. Select 2D for Target Element Type. e. Select 2D for Region 2 f. Click on Input Data… g. Enter 7.0 for Convection Coefficient. h. Click OK. i. Click Select Application Region… j. Click in Application Region/Select Surfaces or Edges. Select the bottom edge of Surface1, Surface 1.1. k. Click Add. l. Click in Coupling Region/Select Surfaces or Edges. Select the top edge of Surface 5, Surface 5.3. m. Click Add, OK, and Apply. a b c d f i e j k l m m m
23 WS17-23 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.) Since the convection coefficient from fuel-to-nozzle is now constant, h=500 BTU/hr ft 2 °F, the Convection/Fixed Coefficient regions option can also be used for the fuel-to- nozzle connection. a. Loads/BCs: Create/Convection/Element Uniform. b. Select Fixed Coefficient for Option. c. Enter Fuel_convection for New Set Name. d. Select 2D for Target Element Type. e. Select 1D for Region 2. f. Click Input Data… g. Enter for Convection Coefficient. h. Click OK. i. Click Select Application Region… j. Click in Application Region/Select Surfaces or Edges. Select the lower edges of Surface 5 and 6, Surface 5.1 and 6.1, using Shift-left mouse button. k. Click Add. l. Click in Coupling Region/Select Curves. Select Curve 1 and 2 using Shift-left mouse button. m. Click Add, OK, and Apply. n. Display: Load/BC/Elem. Props o. Click Vectors/Filters. p. Scale Factor: 0.05 q. Click Apply. g h j k l m m a b c d f i e m
24 WS17-24 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.)
25 WS17-25 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.) Create the flame radiation boundary condition. Use a New Set Name Flame_rad, a VFAC Template ID of 10, an Ambient node Node 999, a Convex Surface ID of 999, an Obstr Flag of 1, and an Enclosure ID of 1. a. Loads/BCs: Create/Radiation/Element Uniform b. Select Template, View Factors for Option. c. Enter Flame_rad for New Set Name. d. Select 2D for Target Element Type. e. Click Input Data… f. Enter 1 for Enclosure ID. g. Enter 10 for VFAC Template ID. h. Enter 999 for Convex Surface ID. i. Select Node 999 for Ambient Node ID. j. Deselect Can Be Obstructing Surface. k. Click OK. l. Click Select Application Region… m. Select Geometry for Geometry Filter. n. Select Edge icon from select menu. o. Select the right edges of Surface 2, 4, and 6, Surface , by using the Shift-left mouse button for Select Surfaces or Edges. p. Click Add, OK, and Apply. g j f h i k m o p p b c d l e a p
26 WS17-26 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.)
27 WS17-27 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.) Create the radiation effect in the still air gap. a. Loads/BCs: Create/Radiation/Element Uniform b. Select Template, View Factor for Option. c. Enter Still_air_rad for New Set Name. d. Select 2D for Target Element Type. e. Click Input Data… f. Enter 2 for Enclosure ID. g. Enter 10 for VFAC Template ID. h. No entry for Convex Surface ID. i. No entry for Ambient Node ID. j. Deselect Can Be Obstructing Surface. k. Click OK. l. Click Select Application Region… m. Select Geometry for Geometry Filter. n. Select Edge icon from select menu. o. Select the perimeter surface edges of the still air gap, Surface 1.1, 4.4, and 5.3, using the Shift-left mouse button for Select Surfaces or Edges. p. Click Add, OK, and Apply. f g h i j k m o p p b c d l e a p
28 WS17-28 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Apply Boundary Conditions (Cont.)
29 WS17-29 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 9: Create a Group Named Nozzle Create and post a group name Nozzle which only includes the nozzle elements. a. Group: Create… b. Enter Nozzle for New Group Name. c. Select Make Current. d. Select Unpost All Other Groups. e. Drag a rectangle around the nozzle portion of the model including the two boundary nodes for Entity Selection. f. Click Apply, then Cancel. a b c e f d
30 WS17-30 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 10: Create template.dat.apnd and mat.dat.apnd Files Use Analysis: Build Template form to create a file named template.dat.apnd containing the VFAC definitions. a. Analysis: Build Template. b. Click Create Template File… c. Create/VFAC/Data Entry d. Enter 10 for VFAC ID. e. Enter 0.8 for Emissivity. f. Click Apply. g. Click Write File… h. Enter name template.dat.apnd. i. Click OK, Cancel, and Cancel. j. Create the mat.dat.apnd file with the contents shown using a text editor. a g i Note: a mat.dat.apnd file is required to define the specific heat property of the advection flow. The mat.dat.apnd file required for this exercise is identical to that created in exercise 12. The file contents are shown as follows. Be sure to create this as a plain text file. c d f e i j
31 WS17-31 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 11: Prepare and Run Analysis Prepare and submit the model for analysis. a. Analysis: Analyze/Full Model/Full Run b. Click Translation Parameters… c. Select Axisymmetric Geometry, R Z Co-ordinates for Model Dimensionality. d. Select Y axis for Radial, R Co- ordinate. e. Select X axis for Centerline, Z Co- ordinate. f. Select Perform Geometry Units Conversion. g. Select inches for From Units. h. Select feet for To Units. i. Select 3, mpidfph.bin (BTU-feet-lbm- hour) for File to Extract Undefined Materials. j. Click OK. k. Click Solution Type… l. Continue to next page. c d f g h i j e b k a
32 WS17-32 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 11: Prepare and Run Analysis (Cont.) Prepare and submit the model for analysis. (continued) a. Select Perform Viewfactor Analysis. b. Click OK c. Click Solution Parameters… d. Select Fahrenheit for Calculation Temperature Scale. e. Click Run Control Parameters… f. Select E-9 BTU/HR/FT2/R4 for Stenfan- Boltzmann Constant. g. Enter for Initial Temperature. h. Select Fahrenheit for Initial Temperature Scale. i. Click OK, and OK. a b f g h i
33 WS17-33 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 11: Prepare and Run Analysis (Cont.) Prepare and submit the model for analysis. (continued) a. Click Output Requests… b. Click Fahrenheit for Units Scale for Output Temperatures. c. Enter Hours for Units Definition for Time Label. d. Click OK. e. Click Apply on the Analyze form. b c d
34 WS17-34 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 12: Read and Plot Results Read and plot the results. a. Analysis: Read Result/Result Entities. b. Click Select Results File… c. Select exercise_17 for directory. d. Select nr0.nrf.01 for available file. e. Click OK. f. Click Select Rslt Template File. g. Select pthermal_1_nodal.res. Tmpl. h. Click OK. i. Click Apply. b c de c f g h i a
35 WS17-35 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 12: Read and Plot Results (Cont.) Now that the results have been read, plot them. To plot the results use the Results application. Select the results file, etc. a. Results: Create/Quick Plot b. Select TIME: D+00 HOURS for Select Result Cases. c. Select Temperature for Select Fringe Result. d. Select the Fringe Attributes icon. e. Select Element Edges for Display. f. Click Label Style… g. Select Fixed for Label Format. h. Use slider bar adjust to 4 for Significant figures. i. Click OK. j. Click Apply. b e f j a a g h i
36 WS17-36 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 12: Read and Plot Results (Cont.)
37 WS17-37 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation Step 13: Quit MSC.Patran Quit MSC.Patran a. Select File on the Menu Bar and select Quit from the drop down menu a
38 WS17-38 PAT312, Workshop 17, December 2006 Copyright 2007 MSC.Software Corporation
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.