Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемАнастасия Тагашова
1 Теорема Пифагора
2 Цели изучения темы Образовательные цели: Повторить свойства сторон и углов прямоугольного треугольника, нахождение его площади. Сформировать умение доказывать теорему. Развивающие цели: Развивать и совершенствовать умение применять имеющиеся знания в измененной ситуации Способствовать развитию умения делать выводы и обобщения Воспитательные цели: Способствовать выработке потребности применения изучаемых фактов Воспитывать самостоятельность и творчество
3 Пифагор Самосский Пифагор Самосский ( гг. до н. э.) древнегреческий философ, математик и мистик, создатель религиозно-философской школы пифагорейцев. Историю жизни Пифагора трудно отделить от легенд, представляющих его в качестве совершенного мудреца и посвящённого во все таинства греков и варваров. Ещё Геродот называл его «величайшим эллинским мудрецом». Основными источниками по жизни и учению Пифагора являются сочинения философа- неоплатоника Ямвлиха «О Пифагоровой жизни»; Порфирия «Жизнь Пифагора»; Диогена Лаэртского кн. 8, «Пифагор». Эти авторы опирались на сочинения более ранних авторов, из которых следует отметить ученика Аристотеля Аристоксена родом из Тарента, где сильны были позиции пифагорейцев.
4 Известная всем теорема Пифагора Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Для всякой тройки положительных чисел a, b и c, такой, что существует прямоугольный треугольник с катетами a и b и гипотенузой c. существует прямоугольный треугольник с катетами a и b и гипотенузой c.
5 Доказательство теоремы Пифагора Дано: прямоугольный треугольник с катетами а, b и гипотенузой с Док-ть: Док-во: достроим треугольник до квадрата со стороной a+b S= = 2ab+c 2 Таким образом,, что и требовалось доказать На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы
6 Прямоугольные треугольники, длины сторон которых – целые числа, называются Пифагоровыми Прямоугольный треугольник со сторонами 3, 4, 5 называется Египетским тройки (a, b, c) натуральных чисел, удовлетворяющие уравнению называются Пифагоровыми
7 Применение теоремы Пифагора Успех развития многих областей науки и техники зависит от развития различных направлений математики. Важным условием повышения эффективности производства является широкое внедрение математических методов в технику и народное хозяйство, что предполагает создание новых, эффективных методов, которые позволяют решать задачи, выдвигаемые практикой. Теорема Пифагора применяется в строительстве, астрономии, мобильной связи и т.д.
8 Вопросы к классу: для каких треугольников верна теорема Пифагора какой способ доказательства наиболее интересен
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.