Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 10 лет назад пользователемГерасим Черносвитов
1 Принцип Кавальери Принцип Кавальери. Если при пересечении двух фигур Ф 1 и Ф 2 в пространстве плоскостями, параллельными одной и той же плоскости, в сечениях получаются фигуры F 1 и F 2 одинаковой площади, то объемы исходных пространственных фигур равны.
2 Объем наклонного цилиндра Теорема. Объем наклонного обобщенного цилиндра равен произведению площади его основания на высоту.
3 Объем наклонной призмы Следствие 1. Объем наклонной призмы с площадью основания S и высотой h вычисляется по формуле V = S·h, где S - площадь основания, h - высота призмы.
4 Объем наклонного цилиндра Следствие 2. Объем наклонного кругового цилиндра, высота которого равна h и радиус основания R, вычисляется по формуле V=πR 2 ·h.
5 Обобщенный конус Пусть F - фигура на плоскости π, и S - точка вне этой плоскости. Отрезки, соединяющие точки фигуры F с точкой S, образуют фигуру в пространстве, которую мы будем называть обобщенным конусом. Фигура F называется основанием обобщенного конуса, точка S - вершиной обобщенного конуса. Перпендикуляр, опущенный из вершины конуса на плоскость основания, называется высотой обобщенного конуса. Частным случаем обобщенного конуса является конус и пирамида. Теорема. Если два конуса имеют равные высоты и основания равной площади, то их объемы равны.
6 Упражнение 1 Верно ли, что две пирамиды, имеющие общее основание и вершины, расположенные в плоскости, параллельной основанию, равновелики? Ответ: Да.
7 Упражнение 2 Верно ли, что любая плоскость, проходящая через центры оснований наклонного кругового цилиндра, делит его на равновеликие части? Ответ: Да.
8 Упражнение 3 В основаниях наклонной призмы квадраты. Верно ли, что любая плоскость, проходящая через центры квадратов, делит призму на две равновеликие части? Ответ: Да.
9 Упражнение 4 Два цилиндра имеют равные высоты, а площадь основания одного в два раза больше площади основания другого. Как относятся их объемы? Ответ: 2:1.
10 Упражнение 5 Верно ли, что любая плоскость, проходящая через вершину и центр основания наклонного кругового конуса, делит его на равновеликие части? Ответ: Да.
11 Упражнение 6 В основании пирамиды квадрат. Верно ли, что любая плоскость, проходящая через вершину пирамиды и центр основания, делит пирамиду на две равновеликие части? Ответ: Да.
12 Упражнение 7 Два конуса имеют равные высоты, а площадь основания одного в три раза больше площади основания другого. Как относятся их объемы? Ответ: 3:1.
13 Упражнение 8 Найдите объем наклонной призмы, площадь основания которой равна S, а боковое ребро b наклонено к плоскости основания под углом φ. Ответ: V = S b sin.
14 Упражнение 9 Стороны основания параллелепипеда равны 6 дм и 8 дм, угол между ними 45°. Боковое ребро равно 7 дм и наклонено к плоскости основания под углом 45°. Найдите объем параллелепипеда. Ответ: 168 дм 3.
15 Упражнение 10 Найдите объем наклонного параллелепипеда, у которого площадь основания равна Q, а боковое ребро, равное b, наклонено к плоскости основания под углом φ. Ответ: Q b sin.
16 Упражнение 11 Найдите объем наклонного кругового цилиндра, радиус основания которого равен R и образующая b наклонена к плоскости основания под углом φ. Ответ: R 2 b sin.
17 Упражнение 12 Основанием наклонного параллелепипеда служит квадрат, сторона которого равна 1 м. Одно из боковых ребер образует с каждой прилежащей стороной основания угол в 60° и равно 2 м. Найдите объем параллелепипеда. Ответ: м 3.
18 Упражнение 13 Основанием наклонной призмы является равносторонний треугольник со стороной a. Одна из боковых граней перпендикулярна основанию и является ромбом, у которого меньшая диагональ равна d. Найдите объем призмы. Ответ:
19 Упражнение 14 Боковые ребра наклонной треугольной призмы равны 15 см, а расстояния между ними равны 26 см, 25 см и 17 см. Определите объем призмы. Ответ: 3060 см 3.
20 Упражнение 15 Даны три параллелепипеда. Проведите плоскость так, чтобы она разделила каждый параллелепипед на две части равного объема. Ответ: Плоскость, проходящая через центры симметрии параллелепипедов.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.