Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЕлена Ефимочкина
3 Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций. Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию (х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х) (х).Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию (х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х) (х).
4 Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией (х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах
5 Методы интерполяции Лагранжа и Ньютона Один из подходов к задаче интерполяции метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, сто функция
6 Сплайн-аппроксимация Другой метод аппроксимации сплайн-аппроксимация отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.
7 Предположим, что требуется заменить некоторую величину и делается n измерений, результаты которых равны xi=x+ i (i=1, 2, …, n), где i это ошибки (или шум) измерений, а х истинное значение. Метод наименьших квадратов утверждает, что наилучшее приближённое значение есть такое число, для которого минимальна сумма квадратов отклонений от : Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n) требуется приблизить многочленом степени m
8 Для нахождения минимума дифференцируем по каждой из неизвестных a k. В результате получим: Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших значениях n задача плохо обусловлена. Эту трудность можно обойти, используя многочлены ортогональные с заданным весом на заданной системе точек, но к этому прибегают только в задачах, связанных с особенно тщательной статической обработкой эксперимента.
9 Полиномы Чебышева Критерии согласия данного метода минимизация максимальной ошибки. Полиномы Чебышева определяются следующим образом: Tn(x)=cos(n arccos(x)) Например:T0(x)=cos(0)=1, T1(x)=cos( )=x, T2(x)=cos(2 )=cos2( )-sin2( )=2x2-1. Можно было бы и дальше использовать тригонометрические соотношения для нахождения полиномов Чебышева любого порядка, но будет лучше установить для них рекурентное соотношение, связывающее Tn+1(x), Tn(x) и Tn-1(x): Tn+1(x)=cos(n + )=cos(n )cos( )-sin(n )sin( ), Tn-1(x)=cos(n - )=cos(n )cos( )-sin(n )sin( ).
10 Рис. 1
11 Применяя полученные формулы можно найти любой полином Чебышева. Например, Т3(x)=2xT2(x)- T1(x). Подставляя значения T2(х) и Т1(х) имеем Т3(х)=2х(2х2-1)-х=4х3-3х. Графически первые 10 полиномов Чебышева изображены ниже. Последующие полиномы по-прежнему колеблются между +1 и -1, причём период колебания уменьшаются с ростом порядка полинома. Преобразования =arccos(x) можно рассматривать как проекцию пересечения полукруга с множеством прямых, имеющих равные углы между собой (рис.1). Таким образом, множество точек xj, на котором система чебышевских многочленов Tn(x) ортогональна, таково:, (j=0, 1, 2, …,N-1) Так как Tn(x) есть, по существу, cos(n ), то они являются равноколеблющимеся функциями, и так как они многочлены, то обладают всеми свойствами ортогональных многочленов. Чебышев показал, что из всех многочленов Рn(x) степени n старшим коэффициентом 1, у многочлена точная верхняя грань абсолютных значений на интервале -1 x 1 наименьшая. Так как верхняя грань Tn(x)=1, указанная верхняя грань равна.
12 Спасибо за внимание!!!!!!!
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.