Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемМихаил Облонский
1 Теорема Пифагора
2 Презентация на тему: «Теорема Пифагора и способы её доказательства. Цель урока: воспитание устойчивого интереса к изучению предмета геометрии; воспитание умений и навыков работы с дополнительной литературой по математике; поиска, выбора и анализы нужной информации по заданной теме и составления исчерпывающего сообщения в краткой форме; оформления наглядности и защиты своего выступления; расширение познания учащихся о жизни великого математика Пифагора, о знаменитой теореме Пифагора и различных способах её доказательства.
3 Если дан нам треугольник, И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим- И таким простым путем К результату мы придем. (И.Дырченко)
4 Известно более 200 способов доказательства теоремы Пифагора. Один из способов мы уже рассматривали на уроках математики. Рассмотрим несколько других способов.
5 Древнекитайское доказательство Здесь теорема Пифагора рассмотрена для египетского треугольника с катетами 3,4 и гипотенузой 5 единиц измерения. По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, т.е. квадрат на гипотенузе содержит 25 клеток, а вписанный в него квадрат на большом катете – 16. следовательно, что оставшаяся часть содержит 9 клеток. Это и будет квадрат на меньшем катете.
6 Древнеиндийское доказательство Математики Древней Индии заметили, что для доказательства теоремы Пифагора достаточно использовать внутреннюю часть древнекитайского чертежа. По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, т.е.: (а+в)²=с² + 2ав 4S=4*0,5ав=2ав Sкв. =с² а²+2ав+в²=с²+2ав
7 Доказательство теоремы Пифагора в учебнике Атанасяна Дано: прямоугольный треугольник АВС Док-ть: а + b = c Док-во: 1. Достроим треугольник АВС до квадрата со сторонами (а+b) b a a a a a 2. У нас получится два квадрата: больший – со сторонами (a+b), а меньший – со стороной с 3. Найдем площадь большего квадрата S =(a+b) 4. Найдем площадь треугольника S = 0,5 ab 5. Площадь маленького квадрата будет S =c или S =S - 4S c = a + 2ab +b – 2ab = a + b Теорема доказана. b b b b с с с с с
8 Алгебраическое доказательство теоремы. Теорема: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Дано: ΔABC Док-ть: AB 2 + BC 2 =AC 2 Док-во: Пусть ΔABC – прямоугольный и LABC – прямой. Проведём высоту BD из вершины B прямого угла. По определению косинуса угла cosA = AD/AB = AB/AC AB 2 = AD * AC cosC = DC/BC = BC/AC BC 2 = DC * AC Сложим полученные равенства почленно: AB 2 + BC 2 = AD * AC + DC*AC = AC(AD +DC)=AC 2 AB 2 + BC 2 =AC 2 ТЕОРЕМА ДОКАЗАНА в с
9 Алгебраическое доказательство теоремы. Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения получаем Что эквивалентно Сложив, получаем или Что и требовалось доказать
10 Способ доказательства теоремы Пифагора. «Метод Гарфилда». Дано: Δ АВС; LА=90 О Доказать: с 2 =а 2 +в 2 Доказательство: 1)Построим СD АС, так чтобы СD= АВ. 2)Построим ЕD АD, так чтобы ED=AC. 3) Соединим точки В и Е. Соединим точки Е и С. 4)Рассмотрим ΔАВС и Δ СЕD- прямоугольные. АС=ЕD(по построению) => ΔАВС= ΔСЕD(по двум равным BA=CD(по построению) катетам) =>ВС=СЕ 5)LACD=LACB+LBCE+LECD=180 0 =>LBCE=LACD-(LACB+LECD)= =90 0 => ΔВСЕ-прямоугольный. 6)S ABED =S ΔABC +S ΔCED +S ΔBCE =2S ΔABC +S ΔBCE =2 ABAC+ BCCE=ABAC+ BCCE Т.к. ABED-трапеция, то S ABED = h = AD 7) ABAC+ BCCE= AD ABAC + BC 2 = ABAC+ = ABAC+ = + + ABAC+ = + BC 2 = AC 2 + AB 2 Ч.Т.Д ACD B E
11 Решите задачу Пифагора. В зданиях романского стиля верхние части для прочности и украшения расчленили на части в виде орнамента. Если ширина окна b, то радиусы полуокружности R=b:2; r=b:4. bR р r
12 Решение: D B CA 90 1)Cоединим точки А, В, С. 2)DBC- равнобедр.(т.к. DB=BC= +p)=>BA –высота => угол => BAС=90 3) Рассмотри ВАС – прямоугольный. Ав = в/2 - р вс = в/4 + р Ас = в/4 4) По теореме Пифагора: с 2 =а 2 +в 2 вс 2 =ва 2 +ас 2 ( в/4 +р) 2 =( в/2 -р ) 2 +( в/4 ) 2 в 2 /16 +2pв/4 +p 2 = в 2 /4 +p 2 +в 2 /16 в 2 /16+вр/ 2-в 2 /4 +в 2 p/16 = p 2 -p 2 вр/2 = в 2 /4 – вр 2вр = в - 4вр В = 4вр + 2вр В = 6 вр 6р = в Р=в/6
13 Решим несколько задач: 1 В треугольнике АВС угол А = 45, ВС=13 см, а высота ВD отсекает на стороне АС отрезок DC, равный 12 см. Найдите площадь треугольника АВС и высоту, проведенную к стороне ВС.
14 2 Одна из диагоналей ромба на 4 см больше другой, а площадь ромба равна 96 см. Найдите стороны ромба. 2
16 П е р п е н д и к у л я р
17 Г и п о т е н у з а
18 П е р п е н д и к у л я р Г и п о т е н у з а Ф и г у р а
19 П е р п е н д и к у л я р Г и п о т е н у з а Ф и г у р а М е д и а н а
20 П е р п е н д и к у л я р Г и п о т е н у з а Ф и г у р а М е д и а н а У г о л
21 П е р п е н д и к у л я р Г и п о т е н у з а Ф и г у р а М е д и а н а У г о л в ы с о т а
22 П е р п е н д и к у л я р Г и п о т е н у з а Ф и г у р а М е д и а н а У г о л в ы с о т а О к р у ж н о с т ь
23 Заповеди Пифагора Пифагор и его ученики были трудолюбивы и аскетичны. Вот их заповеди: -делать то, что впоследствии не огорчит тебя и не принудит раскаиваться; -не делай никогда того, что не знаешь, но научись всему, что следует знать; -не пренебрегай здоровьем своего тела; -приучайся жить просто и без роскоши.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.