Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемПолина Шлыкова
1 Урок - лекция МАОУ СОШ 17 г.Славянск -на-Кубани Геометрия 10 Ковалёва Марина Георгиевна 2011 год
2 Отрезки, соединяющие вершины многогранника, не принадлежащие одной грани, называются диагоналями. Многогранником называется тело, поверхность которого состоит из конечного числа многоугольников, называемых гранями. Стороны и вершины этих многоугольников называются ребрами и вершинами.
3 Многогранник, поверхность которого состоит из шести квадратов Многогранник, поверхность которого состоит из шести параллелограммов Параллелепипед называется прямоугольным, если все его грани прямоугольники Куб Прямоугольный параллелепипед Параллелепипед
4 Многогранник, поверхность которого состоит из двух равных многоугольников и параллелограммов, имеющих общие стороны с каждым из оснований. высотавысота прямаяпрямая наклоннаянаклонная Призма Два равных многоугольника называют основаниями призмы Параллелограммы называют боковыми гранями призмы Перпендикуляр, проведенный из вершины одного основания к плоскости другого основания называют высотой.
5 Площадь призмы Sбок. + 2Sосн Sбок. = Ph a b h Теорема: Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту. Sбок. = ah + ah +bh + bh = = h( 2a + 2b) = Ph Sполн. =
6 Многогранник, поверхность которого состоит из многоугольника и треугольников, имеющих общую вершину Многоугольник называют основанием пирамиды Треугольники называют боковыми гранями Общую вершину называют вершиной пирамиды Перпендикуляр РН называют высотой Sбок. + Sосн. Н Р Пирамида Sполн. =
7 Основание правильный многоугольник, высота опущена в центр основания. Перпендикуляр РЕ называют апофемой Sбок. = Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему Р Е Правильная пирамида Боковые ребра равны Боковые грани – равные равнобедренные треугольники Основание высоты совпадает с центром вписанной или описанной окружности
8 Усеченная пирамида Боковые грани – трапеции Sбок. = Теорема: Площадь боковой поверхности правильной усеченной пирамиды равна половине произведения полусуммы периметров оснований на апофему
9 Тетраэдр Октаэдр Икосаэдр Додекаэдр Куб
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.