Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемМария Штина
1 Геометрия 10 класс Тема урока: «Задачи на построение сечений тетраэдра и параллелепипеда» учитель Белоусова Е.Н.
2 ПланиметрияСтереометрия Изучает свойства геометрических фигур на плоскости Изучает свойства фигур в пространстве В переводе с греческого слово «геометрия» означает «землемерие» «гео» – по-гречески земля, «метрео» – мерить Слово «стереометрия» происходит от греческих слов «стереос» объемный, пространственный, «метрео» – мерить
3 ПланиметрияСтереометрия Наряду с этими фигурами мы будем рассматривать геометрические тела и их поверхности. Например, многогранники. Куб, параллелепипед, призма, пирамида. Тела вращения. Шар, сфера, цилиндр, конус. Основные фигуры: точка, прямая Основные фигуры: точка, прямая, плоскость Другие фигуры: отрезок, луч, треугольник, квадрат, ромб, параллелограмм, трапеция, прямоугольник, выпуклые и невыпуклые n-угольники, круг, окружность, дуга и др.
4 Для обозначение точек используем прописные латинские буквы A DF Для обозначение прямых используем строчные латинские буквы f d h Или обозначаем прямую двумя прописными латинскими буквами. S N
5 Плоскости будем обозначать греческими буквами. На рисунках плоскости обозначаются в виде параллелограммов. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.
6 А 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна. C A B А 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. a A B a А 3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
7 Построить сечение многогранника плоскостью – это значит указать точки пересечения секущей плоскости с ребрами многогранника и соединить эти точки отрезками, принадлежащими граням многогранника. Для построения сечения многогранника плоскостью нужно в плоскости каждой грани указать 2 точки, принадлежащие сечению, соединить их прямой и найти точки пересечения этой прямой с ребрами многогранника.
8 K L M A B C D
9 A B M D C
10 M N C A B D
11 A B M
12 K L M X N A B C D
13 K L M N A B C D
14 K L M A B C D A1A1 B1B1 C1C1 D1D1
15 M R P N A B C D A1A1 B1B1 C1C1 D1D1
16 C D A1A1 B1B1 A B D1D1 C1C1
17 R P M
18 P R M
19 P R M
20 K L M
21 R P M
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.