Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемВалентин Лексин
1 Консультация 4
2 сформировать навыки тригонометрических уравнений методом Преобразования к квадратному уравнению относительно какой-либо тригонометрической функции с последующей заменой переменной. Цель консультации
3 ax² + bx + c =0 Нет корней два корняодин корень В приведенном уравнении x² +рх +q = 0
4 Уравнения, приводимые к квадратным Например: a +b + c = 0
5 Например: a +b +c=0
6 Например: a +b +c=0 |·tgx
7 Решение: sinx =t |t| 1, т. к. at² +bt + c =0 cosx =t |t|1, т. к. tgx =t t R, т. к.
8 sin²x + sin x - 2 = 0 sin x = y sin²x + sin x - 2 = 0 y² + y – 2 = sin x = 1 Решить уравнение ответ обозначим Нет корней, т.к. -2
9 Решение уравнений 600(1,3) Неполное квадратное уравнение вида ах²+с=0, а0 ах² = -с Имеет решение при условии Тогда уравнение имеет два корня повторим ответ Проверить решение
10 Решение уравнений 620(1,3) дальше Проверяем себя
11 ответ
12 Ответ: Корней нет, так как D
13 Решить уравнение 2cos²x - 5 sin x +1 = 0 cos²x = 1 –sin²x 2(1-sin²x) - 5 sin x +1 = sin²x - 5 sin x +1 = 0 -2sin²x - 5 sin x +3 = 0 -2y² - 5 y +3 = 0 где -1 y1 Не удовлетв условию -1 y1 Ответ :
14 621(4) Решить уравнение 2sin²x +3 cosx = 0 2(1-cos²x) +3 cosx = 0 2-2cos²x +3 cosx = 0 2cos²x -3 cosx -2 = 0 где -1 y1 2y² -3y-2=0 Не удовлетв условию -1 y1 проверяем Проверяем дальше
15 Задание для самостоятельной работы §36 пункт1 (стр ) читать с карандашом 620(2,4),623(2)
16 / _7.jpg
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.