Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЛидия Якиманская
1 ГЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ЭКСТРЕМУМ Задачи на нахождение наибольшего или наименьшего значения
2 Определения Задачи, где требуется определить условия, при которых некоторая величина принимает наибольшее и наименьшее значение, принято называть задачами «на экстремум» или задачами «на максимум и минимум». Extremum (лат.)-крайний Maximum (лат.)- наибольший Minimum (лат.)- наименьший Задачи, в которых фигура с экстремальными свойствами отыскивается среди других с равными периметрами. Называются изопериметрическими или «задачами Дидоны».
3 Задача Евклида Если рассмотреть прямоугольник и квадрат с одинаковыми периметрами, то площадь квадрата будет больше. Доказательство: Площадь прямоугольника равна S 0 +S 1, а площадь квадрата S 0 +S 2 и S 1
4 Легенда о Дидоне Дидона- основательница города Карфагена и его первая царица. Вынужденная бежать из своего города, Дидона вместе со своими спутниками прибыла на северный берег Африки и хотела приобрести у местных жителей землю для нового поселения. Ей согласились уступить участок земли, однако не больше, чем объемлет воловья шкура. Хитроумная Дидона разрезала воловью шкуру на узкие ремешки и, сумела ограничить гораздо большую площадь по сравнению с той, которую можно было покрыть одной воловьей шкурой. участок море
5 Задачи Зенодора (2-1 в. до н.э.) Из всех многоугольников с равным периметром и равным числом сторон наибольшую площадь имеет правильный многоугольник Из двух правильных многоугольников с равным периметром большую площадь имеет тот, у которого число углов больше Из всех плоских фигур с равным периметром наибольшую площадь имеет круг.
6 Задача Дидоны (частный случай) Если принять, что береговая линия есть прямая и ограничиваемый участок прямоугольной формы, то наибольшую площадь будет иметь прямоугольник с длинами сторон р/4 и р/2. Р- ПЕРИМЕТР УЧАСТКА. море берег участок р/4р/4 Р/2
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.