Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЮлия Недокукина
1 Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе ( гг.). Учебный материал соответствует календарным планам в объеме трех семестров. Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-ХР Professional. Запуск презентации – F5, навигация – Enter, навигационные клавиши, щелчок мыши, кнопки. Завершение – Esc. Замечания и предложения можно послать по Московский государственный университет путей сообщения (МИИТ) Кафедра теоретической механики Научно-технический центр транспортных технологий
2 Лекция 2. Лекция 2 Система сходящихся сил. Теорема о трех силах. Аналитическое определение равнодействующей сходящихся сил. Уравнения равновесия.
3 Система сходящихся сил – линии действия сил пересекаются в одной точке. План исследования любой системы сил соответствует последовательному решению трех вопросов : 1. Как упростить систему? 2. Каков простейший вид системы? 3. Каковы условия равновесия системы? 1.Перенесем все силы по линии их действия в точку пересечения (кинематическое состояние тела при этом не изменится – следствие из аксиомы присоединения). Лекция 2 Сложим первые две силы F 1 и F 2 (аксиома параллелограмма). Количество сил уменьшилось на единицу. Сложим полученную равнодействующую R 12 со следующей силой F 3. Количество сил вновь уменьшилось на единицу. Повторим эту же операцию со следующей силой F 4. Осталась всего одна сила, эквивалентная исходной системе сил. Сложение сил построением параллелограммов можно заменить построением силового треугольника – выбирается одна из сил или изображается параллельно самой себе с началом в любой произвольной точке, все другие силы изображаются параллельными самим себе с началом, совпадающим с концом предыдущей силы. 2.Простейший вид системы – сила, приложенная в точке пересечения исходных сил. Таким образом, сходящаяся система сил приводится к одной силе – равнодействующей (силе, эквивалентной исходной системе сил), равной геометрической сумме сил системы. 3.Если равнодействующая системы оказывается не равной нулю, тело под действием такой системы силы будет двигаться в направлении равнодействующей (система сил не уравновешена). Для того, чтобы уравновесить систему достаточно приложить силу, равную полученной равнодействующей и направленной в противоположную сторону (аксиома о двух силах). Таким образом, условием равновесия системы сходящихся сил является обращение равнодействующей в ноль. Это условие эквивалентно замкнутости силового треугольника определенным образом, а именно, направление всех сил при обходе по контуру не изменяется по направлению: Результатом такого сложения является вектор, направленный из начала первой силы к концу последней из сил. 5
4 Теорема о трех силах – Если тело, под действием трех непараллельных сил находится в равновесии, то линии действия этих сил пересекаются в одной точке. 1.Перенесем две силы по линии их действия в точку их пересечения (кинематическое состояние тела при этом не изменится – следствие из аксиомы присоединения). Лекция 2 ( продолжение – 2.2 ) 2.Сложим эти силы (аксиома параллелограмма). Теперь система состоит всего из двух сил. А такая система находится в равновесии, если эти силы равны между собой и направлены по одной линии в противоположные стороны. Таким образом, все три силы пересекаются в одной точке. Теорема о трех силах может эффективно применяться для определения направления одной из двух реакций тел: Реакция подвижного шарнира R B направлена вертикально (перпендикулярно опорной плоскости). Направление (угол наклона к горизонту) реакции неподвижного шарнира R A пока не определено. Если тело под действием трех сил F, R A и R B находится в равновесии, то все три силы должны пересекаться в одной точке ( в точке С) : Действительные направления и величины реакций легко определяются построением силового треугольника и использованием подобия треугольников : Аналитическое определение равнодействующей – Каждая из сил, геометрическая сумма которых дает равнодействующую, может быть представлена через ее проекции на координатные оси и единичные векторы (орты): Тогда равнодействующая выражается через проекции сил в виде: Группировка по ортам дает выражения для проекций равнодействующей: Отсюда проекции равнодействующей : Модуль равнодействующей : Направляющие косинусы равнодействующей : Уравнения равновесия сходящейся системы сил Условие равновесия: Равнодействующая должна обращаться в ноль: Отсюда уравнения равновесия : 6
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.