Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемВероника Лимарева
2 3). Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох) В8. В8. На рисунке изображен график функции у = f(x), определенной на интервале (-9; 8). Определите количество целых точек, в которых производная функции положительна. y = f (x) y x ). f / (x) > 0, значит, функция возрастает. Найдем эти участки графика. 2). Найдем все целые точки на этих отрезках. Ответ: 8. Решение:
3 3). Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох) х=0 точка перегиба, в этой точке производная равна 0! В8. В8. На рисунке изображен график функции у = f(x), определенной на интервале (-5; 5). Определите количество целых точек, в которых производная функции отрицательна. y = f (x) y x ). f / (x) < 0, значит, функция убывает. Найдем эти участки графика. 2). Найдем все целые точки на этих отрезках. Ответ: 5. Решение:
4 3). Исключим точки, в которых производная равна 0 (в этих точках касательная параллельна оси Ох) В точке х=1 производная не существует В8. В8. На рисунке изображен график функции у = f(x), определенной на интервале (-6; 8). Определите количество целых точек, в которых производная функции отрицательна. y = f (x) y x ). f / (x) < 0, значит, функция убывает. Найдем эти участки графика. 2). Найдем все целые точки на этих отрезках. Ответ: 8. Решение:
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.