Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемРоза Савоськина
1 Учебный материал Презентацию подготовила : Домбрачева Юлия. Учитель: Н.Н.Кудоспаева
2 Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами. И. Ньютон
3 1.Алгебра. Алгебра 2.Задача. Задача. 3.Метод решения задач. Метод решения задач.Метод решения задач. 4.Первые утверждения о тождествах. Первые утверждения о тождествах.Первые утверждения о тождествах.
4 5.Геометрический подход. Геометрический подход.Геометрический подход. 6.Усовершенствование буквенной символики. Усовершенствование буквенной символики.Усовершенствование буквенной символики. 7.Крупные достижения. Крупные достижения.Крупные достижения. 8.Символика Виета. Символика Виета.Символика Виета. 9.Подведем итоги! Подведем итоги!Подведем итоги!
5 Алгебра – часть математики, которая изучает общие свойства действий над различными ве личинами и решение уравнений, связанных с этими действиями.Алгебра – часть математики, которая изучает общие свойства действий над различными ве личинами и решение уравнений, связанных с этими действиями.
6 задача Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих младших братьев? Обозначив искомое число лет через х, составим уравнение: 30 + х = (20+х) + (6 + х) откуда х = 4.Возрасты трех братьев 30, 20 и 6 лет. Через сколько лет возраст старшего будет равен сумме возрастов обоих младших братьев? Обозначив искомое число лет через х, составим уравнение: 30 + х = (20+х) + (6 + х) откуда х = 4.
7 Близкий к описанному метод решения задач был известен еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не применяли буквенной символики). В сохранившихся до наших дней математических папирусах имеются не только задачи, которые приводят к уравнениям первой степени с одним неизвестным, как в задаче о возрасте братьев, но и задачи, приводящие к уравнениям вида ах2 = b.Близкий к описанному метод решения задач был известен еще во II тысячелетии до н.э. писцам Древнего Египта (однако они не применяли буквенной символики). В сохранившихся до наших дней математических папирусах имеются не только задачи, которые приводят к уравнениям первой степени с одним неизвестным, как в задаче о возрасте братьев, но и задачи, приводящие к уравнениям вида ах2 = b.
8 Еще более сложные задачи умели решать с начала II тысячелетия до н.э. в Древнем Вавилоне; в математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решения типовых задач, из которых решения аналогичных задач получались заменой числовых данных.Еще более сложные задачи умели решать с начала II тысячелетия до н.э. в Древнем Вавилоне; в математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решения типовых задач, из которых решения аналогичных задач получались заменой числовых данных.
9 В числовой форме приводились и некоторые правила тождественных преобразований. Если при решении уравнения надо было извлекать квадратный корень из числа а, не являющегося точным квадратом, находили приближенное значение корня х: делили а на х и брали среднее арифметическое чисел х и а/х.В числовой форме приводились и некоторые правила тождественных преобразований. Если при решении уравнения надо было извлекать квадратный корень из числа а, не являющегося точным квадратом, находили приближенное значение корня х: делили а на х и брали среднее арифметическое чисел х и а/х.
10 Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с VI в. до н.э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника, а произведение трех чисел–как объем прямоугольного параллелепипеда.Первые общие утверждения о тождественных преобразованиях встречаются у древнегреческих математиков, начиная с VI в. до н.э. Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Вместо сложения чисел говорили о сложении отрезков, произведение двух чисел истолковывали как площадь прямоугольника, а произведение трех чисел–как объем прямоугольного параллелепипеда.
11 Алгебраические формулы принимали вид соотношений между площадями и объемами. Например, говорили, что площадь квадрата, построенного на сумме двух отрезков, равна сумме площадей квадратов, построенных на этих отрезках, увеличенной на удвоенную площадь прямоугольника, построенного на этих отрезках. С того времени и идут термины квадрат числа (т. е. произведение величины на самое себя), куб числа, среднее геометрическое.Алгебраические формулы принимали вид соотношений между площадями и объемами. Например, говорили, что площадь квадрата, построенного на сумме двух отрезков, равна сумме площадей квадратов, построенных на этих отрезках, увеличенной на удвоенную площадь прямоугольника, построенного на этих отрезках. С того времени и идут термины квадрат числа (т. е. произведение величины на самое себя), куб числа, среднее геометрическое.
12 Геометрическую форму приняло у греков и решение квадратных уравнений - они искали стороны прямоугольника по заданным периметру и площади.Геометрическую форму приняло у греков и решение квадратных уравнений - они искали стороны прямоугольника по заданным периметру и площади.
13 Большинство задач решалось в Древней Греции путем построений циркулем и линейкой. Но не все задачи поддавались такому решению. Например, не решались задачи удвоения куба, трисекции угла, задачи построения правильного семиугольника. Они приводили к кубическим уравнениям вида х3 = 2, 4х3 - Зх = а и х3 + х2 - 2х - 1 = 0 соответственно.Большинство задач решалось в Древней Греции путем построений циркулем и линейкой. Но не все задачи поддавались такому решению. Например, не решались задачи удвоения куба, трисекции угла, задачи построения правильного семиугольника. Они приводили к кубическим уравнениям вида х3 = 2, 4х3 - Зх = а и х3 + х2 - 2х - 1 = 0 соответственно.
14 Для решений этих задач был разработан новый метод, связанный с отысканием точек пересечения конических сечений (эллипса, параболы и гиперболы).Для решений этих задач был разработан новый метод, связанный с отысканием точек пересечения конических сечений (эллипса, параболы и гиперболы).
15 Геометрический подход к алгебраическим проблемам сковывал дальнейшее развитие науки, так как, например, нельзя было складывать величины разных размерностей (длины и площади или площади и объемы), нельзя было говорить о произведении более чем трех множителей и т.д.Геометрический подход к алгебраическим проблемам сковывал дальнейшее развитие науки, так как, например, нельзя было складывать величины разных размерностей (длины и площади или площади и объемы), нельзя было говорить о произведении более чем трех множителей и т.д.
16 Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в III в. В его книге Арифметика появляются зачатки буквенной символики и специальные обозначения для степеней неизвестного вплоть до 6-й. Были у него и обозначения для степеней с отрицательными показателями, обозначения для отрицательных чисел, а также знак равенства (особого знака для сложения еще не было), краткая запись правил умножения положительных и отрицательных чисел.Отказ от геометрической трактовки наметился у Диофанта Александрийского, жившего в III в. В его книге Арифметика появляются зачатки буквенной символики и специальные обозначения для степеней неизвестного вплоть до 6-й. Были у него и обозначения для степеней с отрицательными показателями, обозначения для отрицательных чисел, а также знак равенства (особого знака для сложения еще не было), краткая запись правил умножения положительных и отрицательных чисел.
17 На дальнейшее развитие алгебры сильное влияние оказали разобранные Диофантом задачи, приводящие к сложным системам алгебраических уравнений, в том числе к системам, где число уравнений было меньше числа неизвестных. Для таких уравнений Диофант искал лишь положительные рациональные решения.
18 С VI в. центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод последовательного исключения неизвестных для решения систем линейных уравнений, дали новые методы приближенного решения уравнений высших степеней. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику.С VI в. центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Китайские ученые разработали метод последовательного исключения неизвестных для решения систем линейных уравнений, дали новые методы приближенного решения уравнений высших степеней. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику.
19 Однако лишь в трудах ученых Ближнего Востока и Средней Азии алгебра оформилась в самостоятельную ветвь математики, трактующую вопросы, связанные с решением уравнений. В IX в. узбекский математик и астроном Мухаммед ал-Хорезми написал трактат Китаб аль-джебр валь-мукабала, где дал общие правила для решения уравнений первой степени.
20 Слово «алъ-джебр» (восстановление), от которого новая наука алгебра получила свое название, означало перенос отрицательных членов уравнения из одной его части в другую с изменением знака. Ученые Востока изучали и решение кубических уравнений, хотя не сумели получить общей формулы для их корней.Слово «алъ-джебр» (восстановление), от которого новая наука алгебра получила свое название, означало перенос отрицательных членов уравнения из одной его части в другую с изменением знака. Ученые Востока изучали и решение кубических уравнений, хотя не сумели получить общей формулы для их корней.
21 В Западной Европе изучение алгебры началось в XIII в. Одним из крупных математиков этого времени был итальянец Леонардо Пизанский (Фибоначчи) (ок – после 1228). Его Книга абака (1202) – трактат, который содержал сведения об арифметике и алгебре до квадратных уравнений включительноВ Западной Европе изучение алгебры началось в XIII в. Одним из крупных математиков этого времени был итальянец Леонардо Пизанский (Фибоначчи) (ок – после 1228). Его Книга абака (1202) – трактат, который содержал сведения об арифметике и алгебре до квадратных уравнений включительно
22 Первым крупным самостоятельным достижением западноевропейских ученых было открытие в XVI в. формулы для решения кубического уравнения. Это было заслугой итальянских алгебраистов С. Дель Ферро, Н. Тарталья и Дж. Кардано. Ученик последнего – Л. Феррари решил и уравнение 4-й степени.Первым крупным самостоятельным достижением западноевропейских ученых было открытие в XVI в. формулы для решения кубического уравнения. Это было заслугой итальянских алгебраистов С. Дель Ферро, Н. Тарталья и Дж. Кардано. Ученик последнего – Л. Феррари решил и уравнение 4-й степени.
23 Изучение некоторых вопросов, связанных с корнями кубических уравнений, привело итальянского алгебраиста Р. Бомбелли к открытию комплексных чисел. Отсутствие удобной и хорошо развитой символики сковывало дальнейшее развитие алгебры: самые сложные формулы приходилось излагать в словесной форме. В конце XVI в. французский математик Ф. Виет ввел буквенные обозначения не только для не известных, но и для произвольных по стоянных.
24 Символика Виета была усовершенствована многими учеными. Окончательный вид ей придал в начале XVII в. французский философ и математик Р. Декарт, который ввел (употребляемые и поныне) обозначения для показателей степеней.Символика Виета была усовершенствована многими учеными. Окончательный вид ей придал в начале XVII в. французский философ и математик Р. Декарт, который ввел (употребляемые и поныне) обозначения для показателей степеней.
25 Постепенно расширялся запас чисел, с которыми можно было производить действия. Завоевывали права гражданства отрицательные числа, потом – комплексные, ученые стали свободно применять иррациональные числа. При этом оказалось, что, несмотря на такое расширение запаса чисел, ранее установленные правила алгебраических преобразований сохраняют свою силу.Постепенно расширялся запас чисел, с которыми можно было производить действия. Завоевывали права гражданства отрицательные числа, потом – комплексные, ученые стали свободно применять иррациональные числа. При этом оказалось, что, несмотря на такое расширение запаса чисел, ранее установленные правила алгебраических преобразований сохраняют свою силу.
26 Подведем итоги! В наши дни алгебра - одна из важнейших частей математики, находящая приложения как в сугубо теоретических отраслях науки, так и во многих практических вопросах.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.