Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемПетр Степнов
1 Исследования тонкой высотной структуры корональных магнитных полей спектральными методами широкодиапазонной радиоастрономии. В.М. Богод (САО РАН), Л.В. Яснов (СПб ГУ)
2 Исследование высотной структуры магнитного поля над пятном в диапазоне высот в несколько тысяч км представляет собой трудную задачу. С одной стороны, это сложно выполнить технически, поскольку параметры плазмы здесь таковы, что они труднодоступны измерениям в рентгеновском и ультрафиолетовом диапазонах. С другой стороны, этот высотный диапазон весьма важен с точки зрения формирования условий зарождения вспышек и нужно знать как можно больше об особенностях магнитной структуры. Обычно недостаток знаний о структуре магнитного поля на этих высотах заполняется модельными экстраполяциями с фотосферного уровня.
3 Здесь мы продолжаем развивать метод многоволновых стереоскопических измерений, который в комбинации с многочастотными изображениями гирорезонансных источников позволяет получать высотную структуру магнитных полей в активных областях. Подобный метод в 90-е годы активно разрабатывался (Aschwanden and Bastian,1994) в наблюдениях на VLA на отдельных волнах преимущественно в дециметровом диапазоне. Аналогичный метод применялся для анализа ультрафиолетовых наблюдений (Aschwanden,1999; Wiegelman&Neukirch,2002). Сейчас в связи с развитием многоволновых спектрографов на радиотелескопе РАТАН-600, измеряющих поляризацию с частотным разрешением до 1% в сантиметровом диапазоне радиоволн, стало возможным развитие методов детального анализа высотной магнитной структуры в активной области. Стало ясно, что для изучения высотной структуры плазмы в активной области важен новый параметр - многоволновость, который дает информацию о подробной структуре магнитного поля, что с другой стороны, также увеличивает и надежность определения такой структуры. В основном, мы использовали для измерений стабильные активные области текущего минимума активности, но делали оценки и для некоторых активных областей прошедшего максимума активности.
4 Новые возможности радиоастрономического метода. 1.Широкий диапазон (сейчас 3 ГГц-18 ГГц) 2.Спектральное разрешение (достигнуто 1%) 3.Многоволновость (80 частотных каналов) 4.Точность координатных измерений ( лучше 0.5 угл.сек.) 5.Чувствительность измерения степени поляризации ( лучше 1%)
5 Суть метода стереоскопии состоит в определении временной зависимости положения источников поляризованного излучения в активной области и на каждой длине волны многоволнового комплекса одновременно. Здесь: Расчетная долгота i-день Расчетная долгота i+d день Измеренная долгота i-день Измеренная долгота i+d день Суточный сдвиг во времени на фотосфере Суточный сдвиг во времени на уровне f i Высота i-уровня
6 Изменения положения радиоисточника зависят от параллактического угла и склонения Солнца в эклиптической системе координат. Используя гелиошироту измеряемого источника вычисляем положение, которое сопоставляем с. Далее методом средних квадратов минимизируем выражение И получаем зависимости и.
7 Связь магнитного поля и длины волны для циклотронного излучения на третьей гармонике гирочастоты. Ширина линии излучения
8 Рис. Многоволновые радионаблюдения Солнца на РАТАН-600. Сканы за 7 и 8 января 2007г. совмещены, как для каналов интенсивности (внизу), так и (вверху) для каналов поляризации (параметр Стокса V). Справа приведен перечень одновременно регистрируемых длин волн.
10 Долготно-высотные характеристики магнитного поля над пятном В наших измерениях мы регистрируем яркую центральную часть поляризованного радиоисточника (вписыванием гауссовой кривой) и связываем его положение с максимальным значением магнитного поля на данной длине волны в предположении циклотронного излучения на При этом, можно рассчитать положения радиоисточника на каждой волне на следующий день и сопоставить это расчетное положение с измеренным значением. Важным фактором становится также измерение величины где - расчетная долгота на частоте. и - расчетная долгота на частоте. Это позволяет определять форму силовой линии магнитного поля по максимальному значению поляризации в радиоисточнике в двух направлениях- по высоте и долготе.
11 Рис. Результаты расчетов для АО NOAA 0933, которая наблюдалась в период 2-8 января 2007г. Слева -зависимости магнитного поля от высоты для трех измерений. Вертикальный отрезок обозначает систематическую ошибку радиоизмерений, связанную с качеством установки диаграммы антенны. Справа – высотно-долгот- ная структура магнитного поля над пятном.
12 Привязка радио и оптических измерений магнитного поля Монотонность зависимости спектр-магнитное поле обеспечивается многоволновостью измерений с точностью до 1%. Однако, на практике антенная система непрерывно перестраивается для других наблюдений и появляется систематическая погрешность смещения всей кривой по высоте. Для сведения этой погрешности к минимальному значению и для получения единообразных данных необходимо найти привязку наших спектральных измерений к независимым измерениям высоты магнитного поля. Для таких опорных измерений использовались данные фотосферных измерений спутника SOHO/MDI. Процедура привязки основана на модельной экстраполяции магнитного поля в рамках дипольного приближения, предложенной в [Takakura, 1972] Здесь, из SOHO/MDI С другой стороны, из поляризационных наблюдений источника над пятном определялась на наибольшей частоте определяем величину магнитного поля по радиоизлучению в наиболее низкой для данной структуры точке. По данным наблюдений имеем, и определяем высоту.
13 Период АО NOAA 0933 Силовая линия, рассчитанная по методу описанным [Seehafer, 1978] для экстраполяции линейного бессилового магнитного поля с максимальным значением α=0.054 с начальной точкой в максимальном магнитном поле на фотосфере. Использовались данные SOHO/MDI и РАТАН-600.
14 Период АО NOAA 0940 Рис. 6. а) Магнитное поле на фотосфере для активной области NOAA 0940 за 2 февраля по данным измерений в обсерватории Хуайроу и проекция реконструированных силовых линий на экваториальную плоскость для = (максимально возможное значение по методу [Seehafer, 1978] ) б) структура магнитного поля, построенная по данным наблюдений на РАТАН 600. Рисунки приведены в одинаковом масштабе вдоль долготы Солнца.
15 Вертикальная структура магнитного поля NOAA 0940, полученная по модельной реконструкции и из измерений Это подтверждает ранние поляризационные измерения на РАТАН-600 в микроволновом диапазоне, что магнитные поля над пятнами лишь на 20% ниже, чем дают измерения на фотосфере, полученные оптическими методами. [Ахмедов и др. 1982; Абрамов-Максимов, и др., 1998 и др.]
16 Рис. Реконструкция магнитного поля над активной областью [Gary, 2001]. По различным моделям высота переходной области в активной области около 2- 4т. км. Из приведенного рисунка следует, что на этих высотах В= Гс, если на фотосфере 3000 Гс, а по радио измерениям поле должно быть лишь на 20% меньше, то есть более 2400 Гс. О сопоставлении моделей и измерений высотной структуры магнитного поля в активной области Akhmedov etal, S.Ph., 1982
17 Возможные причины расхождений Дипольная и потенциальная экстраполяция фотосферного поля с альфа =0 дают существенно заниженные напряженности магнитного поля в переходной области и нижней короне. а) Возможно, что магнитное поле в хромосфере и короне сильно структурировано. В этом случае радиоизлучение исходящее из структур с максимальной напряженностью магнитного поля и должно отличаться от реконструированных магнитных полей дающих усредненное значение магнитного поля б) Неточность реконструкций магнитного поля, возможно, также связана с предположением о низком значении плазменного 1. в) Наличие сильной скрученности магнитного поля (модели линейного и нелинейного бессилового поля с ). г) Подтверждается мягким рентгеном [Кlimchuk, 2000], Петли в вершинах менее чем на 30% шире чем в основаниях.
18 Рис. Высотное распределение магнитного поля от высоты для АО NOAA Справа, данные MDI SOHO NOAA 0953 за
19 Рис. Структура силовой трубки магнитного поля для АО NOAA Слева - монотонная зависимость магнитного поля от долготы. Справа – зависимость высоты h от масштаба на фотосфере x. Из сопоставлений рисунков видно, что силовая трубка распространяется вверх по спирали, шириной около 0.4 солнечных градуса. NOAA 0953 за
22 Петельная структура магнитного поля по данным в рентгене Кlimchuk, 2000, Solar Physics Fig20. Twisted magnetic flux tube of uniform thickness surrounded by untwisted field that is expanding with height. Fig1. Full-resolution SXT image from the 26 December 1991 orbit beginning 17:58 UT. Dimensions are _ Loop footpoints are marked with stars.
23 ВЫВОДЫ 1.Разработан метод оценки высотной структуры магнитного поля в короне активных областях по многоволновым спектрально- поляризационным наблюдениям радиоволн, который дает не только зависимость напряженности магнитного поля от высоты, но и определяет двумерную форму силовой трубки, радиоизлучаюшей в микроволновом диапазоне длин волн. 2. Магнитные поля напряженностью около 1000 Гаусс находятся на достаточно больших высотах в атмосфере Солнца (от 10 до 40 т.км ), что хорошо подтверждает наблюдения в ультрафиолете, по которым расходимость силовых трубок мала (не более 15% в вершинах магнитных петель), а также соответствует предыдущим радиоастрономическим измерениям магнитного поля на уровне переходной области. 3. Необходимо развитие нелинейных моделей реконструкции магнитного поля для согласования расчетов и измерений в широкой толще атмосферы Солнца.
24 Благодарю за внимание!
25 Рис.5. Результаты расчетов для АО NOAA 0935 для периода 3-4 января 2007г. Слева-приведена зависимость магнитного поля от высоты, справа - двумерная высотно-долготная структура магнитного поля.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.