Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемЮрий Яхремов
1 ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ ЭЛЕКТРОНОВ И ГАММА-ЧАСТИЦ В ГРОЗОВЫХ РАЗРЯДАХ (ВЗГЛЯД С ПОЗИЦИЙ ФИЗИЧЕСКОЙ КИНЕТИКИ СЛОЖНЫХ СИСТЕМ) Туганов В.Ф., ИКИ РАН, ГНЦ РФ ТРИНИТИ «Физика плазмы в солнечной системе» 9 февраля 2012 г., ИКИ РАН
2 Spectrums of TGF and LDGP
3 1. Наблюдаемые -спектры, вопросы: 1.1 на частотах
4 2. Следствия и предположения: 2.1 Предполагая тормозной механизм гамма- всплесков, можно выявить необходимую форму (вид) функции распределения электронов, приводящую к наблюдаемым степенным спектрам излучения: с показателями Парето =1 при 10 Мэв
5 И эта форма имеет вид:
6 2.2 Тогда при тормозном механизме излучения - квантов: а) универсальность спектра ( 1/ ) на 0 ).
7 3. Конкретизация модели. Тормозной механизм -всплесков выявляет необходимую форму (вид) функции распределения электронов f( ), приводящую к разным - спектрам, отвечающим 10 Мэв. Но! Здесь неизвестны 3 коэффициента:, и a. Используем методы физической кинетики: "угадав" закон движения точки в фазовом пространстве, определяющий эту форму, перейдем от формы распределения f( ) к его полной (теоретической) конкретизации. Причем так, чтобы при > o из нее следовала и «степень», и «экспонента»! o из нее следовала и «степень», и «экспонента»!">
8 Это и было выполнено в ( esis.pdf, стр. 120): усредненяя флуктуирующие (точные) функции фазовой плотности распределения N(t, ), удовлетворяющие уравнению Лиувилля: esis.pdf N(t, )/ t + [V(t, ) N(t, )]/ = 0 Здесь V(t, ) =V(,D(t)) – скорость изменения импульса, которая через функцию среднего импульса D(t) = dX X N(t, )
9 самосогласованно зависит от функции N(t, ) и вместе с ней флуктуирует около среднего значения D = d f( ) f( )= – средняя функция распределения, символ означает усреднение по физически бесконечно малым объемам. Итогом будет интеграл столкновений для функции распределения f( ) f( )/ t = - /, где V(t, ) и N(t, )> - флуктуаций скорости V(t, ) и N(t, )
10 Неизвестные коэффициенты теперь известные функции μ = μ(а,d) = (а,d) коэффициента вариации импульса электронов d= 2 /D 2 ( 2 – дисперсия) и задающего систему параметра а (0
11 Параметр a – неизвестен, но форма найденных функций f(ξ) имеет два предела: при а>>1 f(ξ) ξ -1 exp(- ξ), =1/d 1 и при a
12 4. Усложнение модели. Интерпретация же -спектров с показателями Парето 1/d 2, т.к -2=1+1/d 1.
13 Таким образом: Тормозной механизм излучения -квантов позволяет не только объяснить весь наблюдаемый спектр -вспышек при грозовых разрядах, но и весь наблюдаемый диапазон соответствующих значений показателя ( ) при частотах >10 Мэв (для 0 =1-d 1), значит /d= /dD, т.е. dD=7 Мэв (D – средний импульс в распределении электронов f(ξ)).
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.