Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 11 лет назад пользователемДмитрий Дорин
1 Применение метода математической индукции в решении заданий ЕГЭ (С 5) Работу выполнил: ученик 10 «А» класса МАОУ «Ярковская СОШ» Антипин Андрей Тюменская область, Ярковский район, С. Ярково
2 Считаю выбранную мною тему актуальной из-за недостаточности практического содержания задач в учебниках по «Алгебре» и началам анализа для старших классов. Мне необходимо более полно выполнить работу для получения высокого балла. Цель: Найти, обосновать и наглядно показать систему формирования практического значения метода математической индукции как необходимого фактора для решения задач.
3 Введение В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.
4 Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. Например, в математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство |AB|+|BC| |AC|.
5 Основная часть Осознание метода математической индукции как отдельного важного метода восходит к Блезу Паскалю и Герсониду, хотя отдельные случаи применения встречаются ещё в античные времена у Прокла и Эвклида. Современное название метода было введено де Морганом в 1838 году. По своему первоначальному смыслу слово индукция применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений.
6 Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
7 Простейшим методом рассуждений является полная индукция. Вот пример: Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представим в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения: 4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5; 14=7+7; 16=11+5; 18=13+5; 20=13+7.
8 Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых. Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев. Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).
9 Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам. Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции.
10 Принцип математической индукции. Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.
11 Если предложение А(n) истинно при n=p и если А(k) >А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p. Док-во по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть док-ва, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k,т.е. доказывают, что А(k) >A(k+1).
12 Работу выполнил: ученик 10 «А» класса МАОУ «Ярков Антипин Андрей Тюменская область, Ярковский район, С. Ярково
13 Доказательство формулы n-го члена арифметической прогрессии
14 Метод математической индукции в решении задач на делимость. Пример Доказать, что при любом n, 7 n -1 делится на 6 без остатка. Решение: 1)Пусть n=1, тогда Х 1 =7 1 -1=6 делится на 6 без остатка. Значит при n=1 утверждение верно. 2) Предположим, что при n=k,7 k -1 делится на 6 без остатка.
15 3) Докажем, что утверждение справедливо для n=k+1. X k+1 =7 k+1 -1=7 7 k -7+6=7(7 k -1)+6. Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.
16 Применение метода к суммированию рядов. Пример Доказать, что 1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х (1) Решение: 1) При n=1 получаем 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1 следовательно, при n=1 формула верна; А(1) истинно.
17 2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е. 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1). Докажем, что тогда выполняется равенство 1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1). В самом деле 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k )+x k+1 = (x k+1 -1)/(x-1)+x k+1 = =(x k+2 -1)/(x-1). Итак, А(k) > A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n.
18 Применения метода к доказательству неравенств. Пример Доказать, что при n>2 справедливо неравенство 1+(1/2 2 )+(1/3 2 )+…+(1/n 2 )
19 3) Докажем справедливость неравенства при n=k+1 (1+(1/2 2 )+…+(1/k 2 ))+(1/(k+1) 2 )<
20 Применение метода к другим задачам Пример Доказать, что число диагоналей выпуклого n- угольника равно n(n-3)/2. Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно. 2) Предположим, что во всяком выпуклом k-угольнике имеет ся А k =k(k-3)/2 диагоналей.
21 3)Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2. Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)- угольник. Проведём в нём диагональ A 1 A k. Чтобы подсчитать общее число диагоналей этого (k+1)- угольника нужно подсчитать число диагоналей в k- угольнике A 1 A 2 …A k, прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1, и, кроме того, следует учесть диагональ А 1 А k. Таким образом, k+1=k+(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2. Итак, А(k) > A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.
22 Пусть имеется выпуклая фигура и внутри ее взяты n точек. Тогда центр масс этих точек тоже принадлежит фигуре. Доказательство проведем по индукции. Докажем базу: центр масс двух точек по определению принадлежит соединяющему их отрезку, в силу выпуклости фигуры, принадлежит фигуре. База доказана, теперь шаг индукции. Цент масс n+1 точек – это, в силу определения, центр масс двух точек: любой одной и центра масс всех остальных, которых n штук. В силу предположения индукции центр масс этих остальных n точек принадлежит фигуре, а значит, центр масс его и (n+1)-й точки тоже принадлежит фигуре, так как по определению лежит на отрезке, соединяющем эти две точки нашей выпуклой фигуры, что и требовалось доказать. Доказательство теоремы с помощью математической индукции
23 Заключение В частности изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу. В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По- моему, это является основой любой науки.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.